Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Stem Cells ; 38(8): 936-947, 2020 08.
Article in English | MEDLINE | ID: mdl-32374064

ABSTRACT

Huntington's disease (HD) is a devastating, autosomal-dominant neurodegenerative disease, for which there are currently no disease-modifying therapies. Clinical trials to replace the damaged striatal medium spiny neurons (MSNs) have been attempted in the past two decades but have met with only limited success. In this study, we investigated whether a clonal, conditionally immortalized neural stem cell line (CTX0E03), which has already shown safety and signals of efficacy in chronic ischemic stroke patients, could rescue deficits seen in an animal model of HD. After CTX0E03 transplantation into the quinolinic acid-lesioned rat model of HD, behavioral changes were measured using the rotarod, stepping, and staircase tests. In vivo differentiation and neuronal connections of the transplanted CTX0E03 cells were evaluated with immunohistochemical staining and retrograde tracing with Fluoro-Gold. We found that transplantation of CTX0E03 gave rise to a significant behavioral improvement compared with the sham- or fibroblast-transplanted group. Transplanted CTX0E03 formed MSNs (DARPP-32) and GABAergic neurons (GABA, GAD65/67) with BDNF expression in the striatum, while cortically transplanted cells formed Tbr1-positive neurons. Using a retrograde label, we also found stable engraftment and connection of the transplanted cells with host brain tissues. CTX0E03 transplantation also reduced glial scar formation and inflammation, as well as increasing endogenous neurogenesis and angiogenesis. Overall, our results demonstrate that CTX0E03, a clinical-grade neural stem cell line, is effective for preclinical test in HD, and, therefore, will be useful for clinical development in the treatment of HD patients.


Subject(s)
Huntington Disease/metabolism , Neural Stem Cells/metabolism , Quinolinic Acid/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Neoplasm Grading
2.
Sci Rep ; 9(1): 13190, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31519924

ABSTRACT

Human olfactory mucosa cells (hOMCs) have been transplanted to the damaged spinal cord both pre-clinically and clinically. To date mainly autologous cells have been tested. However, inter-patient variability in cell recovery and quality, and the fact that the neuroprotective olfactory ensheathing cell (OEC) subset is difficult to isolate, means an allogeneic hOMC therapy would be an attractive "off-the-shelf" alternative. The aim of this study was to generate a candidate cell line from late-adherent hOMCs, thought to contain the OEC subset. Primary late-adherent hOMCs were transduced with a c-MycERTAM gene that enables cell proliferation in the presence of 4-hydroxytamoxifen (4-OHT). Two c-MycERTAM-derived polyclonal populations, PA5 and PA7, were generated and expanded. PA5 cells had a normal human karyotype (46, XY) and exhibited faster growth kinetics than PA7, and were therefore selected for further characterisation. PA5 hOMCs express glial markers (p75NTR, S100ß, GFAP and oligodendrocyte marker O4), neuronal markers (nestin and ß-III-tubulin) and fibroblast-associated markers (CD90/Thy1 and fibronectin). Co-culture of PA5 cells with a neuronal cell line (NG108-15) and with primary dorsal root ganglion (DRG) neurons resulted in significant neurite outgrowth after 5 days. Therefore, c-MycERTAM-derived PA5 hOMCs have potential as a regenerative therapy for neural cells.


Subject(s)
Genes, myc , Olfactory Mucosa/cytology , Recombinant Proteins/genetics , Transduction, Genetic/methods , Adult , Animals , Biomarkers/metabolism , Cell Line , Coculture Techniques , Ganglia, Spinal/cytology , Gentamicins/pharmacology , Humans , Karyotyping , Mice , Neuroblastoma/pathology , Olfactory Mucosa/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/genetics , Recombinant Proteins/metabolism , Sensory Receptor Cells/cytology , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Transgenes
3.
Stem Cells Dev ; 26(13): 933-947, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28446071

ABSTRACT

Chronic disability after stroke represents a major unmet neurologic need. ReNeuron's development of a human neural stem cell (hNSC) therapy for chronic disability after stroke is progressing through early clinical studies. A Phase I trial has recently been published, showing no safety concerns and some promising signs of efficacy. A single-arm Phase II multicenter trial in patients with stable upper-limb paresis has recently completed recruitment. The hNSCs administrated are from a manufactured, conditionally immortalized hNSC line (ReNeuron's CTX0E03 or CTX), generated with c-mycERTAM technology. This technology has enabled CTX to be manufactured at large scale under cGMP conditions, ensuring sufficient supply to meets the demands of research, clinical development, and, eventually, the market. CTX has key pro-angiogenic, pro-neurogenic, and immunomodulatory characteristics that are mechanistically important in functional recovery poststroke. This review covers the progress of CTX cell therapy from its laboratory origins to the clinic, concluding with a look into the late stage clinical future.


Subject(s)
Brain Ischemia/therapy , Neural Stem Cells/transplantation , Stem Cell Transplantation , Stroke/therapy , Brain Ischemia/genetics , Brain Ischemia/physiopathology , Cell Differentiation/genetics , Cell- and Tissue-Based Therapy , Humans , Neurogenesis/genetics , Neurons/metabolism , Stroke/genetics , Stroke/physiopathology
4.
PLoS One ; 11(1): e0146353, 2016.
Article in English | MEDLINE | ID: mdl-26752061

ABSTRACT

Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.


Subject(s)
Exosomes/metabolism , MicroRNAs/genetics , Neural Stem Cells/metabolism , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/metabolism
5.
Am J Physiol Endocrinol Metab ; 309(6): E511-22, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26126685

ABSTRACT

The development of hepatocyte cell models that represent fatty acid partitioning within the human liver would be beneficial for the study of the development and progression of nonalcoholic fatty liver disease (NAFLD). We sought to develop and characterize a novel human liver cell line (LIV0APOLY) to establish a model of lipid accumulation using a physiological mixture of fatty acids under low- and high-glucose conditions. LIV0APOLY cells were compared with a well-established cell line (HepG2) and, where possible, primary human hepatocytes. LIV0APOLY cells were found to proliferate and express some mature liver markers and were wild type for the PNPLA3 (rs738409) gene, whereas HepG2 cells carried the Ile(148)Met variant that is positively associated with liver fat content. Intracellular triglyceride content was higher in HepG2 than in LIV0APOLY cells; exposure to high glucose and/or exogenous fatty acids increased intracellular triglyceride in both cell lines. Triglyceride concentrations in media were higher from LIV0APOLY compared with HepG2 cells. Culturing LIV0APOLY cells in high glucose increased a marker of endoplasmic reticulum stress and attenuated insulin-stimulated Akt phosphorylation whereas low glucose and exogenous fatty acids increased AMPK phosphorylation. Although LIV0APOLY cells and primary hepatocytes stored similar amounts of exogenous fatty acids as triglyceride, more exogenous fatty acids were partitioned toward oxidation in the LIV0APOLY cells than in primary hepatocytes. LIV0APOLY cells offer the potential to be a renewable cellular model for studying the effects of exogenous metabolic substrates on fatty acid partitioning; however, their usefulness as a model of lipoprotein metabolism needs to be further explored.


Subject(s)
Fatty Acids/metabolism , Glucose/metabolism , Hepatocytes/metabolism , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Cell Line , Endoplasmic Reticulum Stress , Hep G2 Cells , Humans , Insulin/metabolism , Lipase/genetics , Membrane Proteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
6.
J Vis Exp ; (98)2015 Apr 12.
Article in English | MEDLINE | ID: mdl-25938519

ABSTRACT

Neural stem cells (NSCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes under specific local microenvironments. In here, we present a set of methods used for three dimensional (3D) differentiation and miRNA analysis of a clonal human neural stem cell (hNSC) line, currently in clinical trials for stroke disability (NCT01151124 and NCT02117635, Clinicaltrials.gov). HNSCs were derived from an ethical approved first trimester human fetal cortex and conditionally immortalized using retroviral integration of a single copy of the c-mycER(TAM)construct. We describe how to measure axon process outgrowth of hNSCs differentiated on 3D scaffolds and how to quantify associated changes in miRNA expression using PCR array. Furthermore we exemplify computational analysis with the aim of selecting miRNA putative targets. SOX5 and NR4A3 were identified as suitable miRNA putative target of selected significantly down-regulated miRNAs in differentiated hNSC. MiRNA target validation was performed on SOX5 and NR4A3 3'UTRs by dual reporter plasmid transfection and dual luciferase assay.


Subject(s)
Cell Culture Techniques/methods , MicroRNAs/analysis , Neural Stem Cells/cytology , Cell Differentiation/physiology , Cell Line , Humans , MicroRNAs/biosynthesis , MicroRNAs/genetics , Neural Stem Cells/chemistry , Neurons/chemistry , Neurons/cytology , Oligodendroglia/chemistry , Oligodendroglia/cytology , Transfection
7.
PLoS One ; 9(9): e106346, 2014.
Article in English | MEDLINE | ID: mdl-25187991

ABSTRACT

Brain and vascular cells form a functionally integrated signalling network that is known as the neurovascular unit (NVU). The signalling (autocrine, paracrine and juxtacrine) between different elements of this unit, especially in humans, is difficult to disentangle in vivo. Developing representative in vitro models is therefore essential to better understand the cellular interactions that govern the neurovascular environment. We here describe a novel approach to assay these cellular interactions by combining a human adult cerebral microvascular endothelial cell line (hCMEC/D3) with a fetal ganglionic eminence-derived neural stem cell (hNSC) line. These cell lines provide abundant homogeneous populations of cells to produce a consistently reproducible in vitro model of endothelial morphogenesis and the ensuing NVU. Vasculature-like structures (VLS) interspersed with patches of differentiating neural cells only occurred when hNSCs were seeded onto a differentiated endothelium. These VLS emerged within 3 days of coculture and by day 6 were stabilizing. After 7 days of coculture, neuronal differentiation of hNSCs was increased 3-fold, but had no significant effect on astrocyte or oligodendrocyte differentiation. ZO1, a marker of adherens and tight junctions, was highly expressed in both undifferentiated and differentiated endothelial cells, but the adherens junction markers CD31 and VE-cadherin were significantly reduced in coculture by approximately 20%. A basement membrane, consisting of laminin, vitronectin, and collagen I and IV, separated the VLS from neural patches. This simple assay can assist in elucidating the cellular and molecular signaling involved in the formation of VLS, as well as the enhancement of neuronal differentiation through endothelial signaling.


Subject(s)
Brain/cytology , Endothelial Cells/cytology , Neural Stem Cells/cytology , Astrocytes/cytology , Cell Differentiation , Cell Line , Cells, Cultured , Coculture Techniques , Humans
8.
Stem Cell Res Ther ; 5(2): 49, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24725992

ABSTRACT

INTRODUCTION: Stem cells have the ability to self-renew or to differentiate into numerous cell types; however, our understanding of how to control and exploit this potential is currently limited. An emerging hypothesis is that microRNAs (miRNAs) play a central role in controlling stem cell-fate determination. Herein, we have characterized the effects of miRNAs in differentiated human neural stem cells (hNSCs) by using a cell line currently being tested in clinical trials for stroke disability (NCT01151124, Clinicaltrials.gov). METHODS: HNSCs were differentiated on 2- (2D) and 3-dimensional (3D) cultures for 1 and 3 weeks. Quantification of hNSC differentiation was measured with real-time PCR and axon outgrowth. The miRNA PCR arrays were implemented to investigate differential expression profiles in differentiated hNSCs. Evaluation of miRNA effects on hNSCs was performed by using transfection of miRNA mimics, real-time PCR, Western blot, and immunocytochemistry. RESULTS: The 3D substrate promoted enhanced hNSC differentiation coupled with a loss of cell proliferation. Differentiated hNSCs exhibited a similar miRNA profiling. However, in 3D samples, the degree and timing of regulation were significantly different in miRNA members of cluster mi-R17 and miR-96-182, and hsa-miR-302a. Overall, hNSC 3D cultures demonstrated differential regulation of miRNAs involved in hNSC stemness, cell proliferation, and differentiation. The miRNA mimic analysis of hsa-miR-146b-5p and hsa-miR-99a confirmed induction of lineage-committed progenitors. Downregulated miRNAs were more abundant; those most significantly downregulated were selected, and their putative target mRNAs analyzed with the aim of unraveling their functionality. In differentiated hNSCs, downregulated hsa-miR-96 correlated with SOX5 upregulation of gene and protein expression; similar results were obtained for hsa-miR-302a, hsa-miR-182, hsa-miR-7, hsa-miR-20a/b, and hsa-miR-17 and their target NR4A3. Moreover, SOX5 was identified as a direct target gene of hsa-miR-96, and NR43A, a direct target of hsa-miR-7 and hsa-mir-17 by luciferase reporter assays. Therefore, the regulatory role of these miRNAs may occur through targeting NR4A3 and SOX5, both reported as modulators of cell-cycle progression and axon length. CONCLUSIONS: The results provide new insight into the identification of specific miRNAs implicated in hNSC differentiation. These strategies may be exploited to optimize in vitro hNSC differentiation potential for use in preclinical studies and future clinical applications.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Neural Stem Cells/physiology , Cell Culture Techniques , Cell Differentiation/physiology , Cell Proliferation/physiology , Gene Expression Profiling , Humans , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Stroke/genetics , Stroke/metabolism , Stroke/pathology , Transfection
9.
Cell Transplant ; 22(9): 1541-52, 2013.
Article in English | MEDLINE | ID: mdl-23067568

ABSTRACT

CTX0E03 is a human neural stem cell line previously reported to reduce sensory motor deficits in a middle cerebral artery occlusion (MCAo) model of stroke. The objective of this study was to investigate if CTX0E03 treatment promotes angiogenesis. As stroke leads to damage of the vasculature in the brain, angiogenesis may contribute to the functional recovery. To test this hypothesis, the angiogenic activity of CTX0E03 was assessed both in vitro and in vivo. In vitro, CTX0E03 expression of trophic and proangiogenic factors was determined by real-time RT-PCR, Western blot, and ELISA, and its angiogenic activity was investigated in well-established angiogenesis assays. In vivo, angiogenesis was investigated in naive mice and MCAo rat brain and was evaluated by immunohistochemistry (IHC) using Von Willebrand factor (VWF), a marker of blood vessel formation, and BrdU/CD31 double labeling in naive mice only. In vitro results showed that CTX0E03-conditioned medium and coculture significantly increased total tubule formation compared with controls (p=0.002 and p=0.0008, respectively). Furthermore, CTX0E03 cells were found to be in direct association with the tubules by ICC. In vivo CTX0E03-treated brains demonstrated a significant increase in areas occupied by VWF-positive microvessels compared with vehicle-treated naive mice (two-way ANOVA, Interaction p<0.05, Treatment p<0.0001, Time p<0.0) and MCAo rat (p=0.001 unpaired t test, Welch's correction). CTX0E03-treated naive mouse brains showed an increase in BrdU/CD31 colabeling. In conclusion, in vitro CTX0E03 cells express proangiogenic factors and may promote angiogenesis by both release of paracrine factors and direct physical interaction. Furthermore, in vivo CTX0E03-treated rodent brains exhibited a significant increase in microvessels at the site of implantation compared with vehicle-injected groups. Taken together these data suggest that CTX0E03 cell therapy may provide significant benefit to stroke patients through upregulation of angiogenesis in the ischemic brain.


Subject(s)
Neural Stem Cells/physiology , Neurons/physiology , Stem Cell Transplantation/methods , Angiogenic Proteins/biosynthesis , Animals , Blotting, Western , Cell Differentiation/physiology , Cell Line , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic/physiology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism , Rats , Real-Time Polymerase Chain Reaction
10.
Prog Brain Res ; 201: 119-67, 2012.
Article in English | MEDLINE | ID: mdl-23186713

ABSTRACT

The prospects for stem cell-derived therapy in stroke look promising, with a myriad of cell therapy products developed from brain, blood, bone marrow, and adipose tissue in early clinical development. Eight clinical trials have now reported final results, and several are currently registered recruiting patients or pending to start. Products passing the safety hurdle are recruiting patients for large efficacy studies. Besides identifying the most appropriate cell type, other issues to resolve include optimal timing for intervention, optimal delivery route, cell dose, patient selection, relevant clinical endpoints, and monitoring for effectiveness, to advance cell therapy through the hurdles of clinical research. In this chapter, we present the products and strategies used in the current cell therapy trials in ischemic stroke, provide an update on relevant preclinical research, and discuss the vital developments still needed to advance their clinical application as a future therapeutic option.


Subject(s)
Stem Cell Transplantation/methods , Stem Cells/physiology , Stroke/surgery , Humans
11.
Int J Stroke ; 7(5): 426-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22712742

ABSTRACT

Stroke, for some years now the neglected major indication in the pharmaceutical development cupboard, has recently become one of the hot areas for stem cell therapy development. This is driven by better understanding of potential therapeutic opportunities both in the acute and chronic phases and the launch of a series of new early phase clinical trials in a number of countries, driven by positive data in relevant animal models. In addition, the impetus for stem cell product development is motivated by patient demand, with thousands of victims seeking unproven treatments abroad. This article looks at the many challenges facing the development of a stem cell therapy for stroke. These range from product characterization and banking, through nonclinical safety and efficacy to the regulatory requirements for starting patient trials and beyond to maximizing value from carefully designed efficacy trials.


Subject(s)
Stem Cell Transplantation/methods , Stroke/therapy , Animals , Chronic Disease , Clinical Trials as Topic/methods , Consumer Product Safety , Diffusion of Innovation , Disease Models, Animal , Forecasting , Humans , Patient Safety , Patient Selection , Public Opinion , Stem Cell Transplantation/adverse effects , Treatment Outcome
12.
Stem Cells ; 30(4): 785-96, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22213183

ABSTRACT

Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri-infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI-based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3-month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage.


Subject(s)
Neural Stem Cells/cytology , Neural Stem Cells/transplantation , Stem Cell Transplantation , Stroke/pathology , Stroke/therapy , Animals , Behavior, Animal , Blood Vessels/pathology , Cell Differentiation , Cell Line , Chronic Disease , Disease Models, Animal , Graft Survival , Humans , Magnetic Resonance Imaging , Neurogenesis , Rats , Treatment Outcome
13.
Cell Transplant ; 19(10): 1291-306, 2010.
Article in English | MEDLINE | ID: mdl-20447347

ABSTRACT

Human fetal retinal cells have been widely advocated for the development of cellular replacement therapies in patients with retinal dystrophies and age-related macular degeneration. A major limitation, however, is the lack of an abundant and renewable source of cells to meet therapeutic demand, although theoretically this may be addressed through the use of immortalized retinal progenitor cell lines. Here, we have used the temperature-sensitive tsA58 simian virus SV40 T antigen to conditionally immortalize human retinal progenitor cells isolated from retinal tissue at 10-12 weeks of gestation. We show that immortalized human fetal retinal cells retain their progenitor cell properties over many passages, and are comparable with nonimmortalized human fetal retinal cultures from the same gestational period with regard to expression of certain retinal genes. To evaluate the capacity of these cells to integrate into the diseased retina and to screen for potential tumorigenicity, cells were grafted into neonatal hooded Lister rats and RCS dystrophic rats. Both cell lines exhibited scarce integration into the host retina and failed to express markers of mature differentiated retinal cells. Moreover, although immortalized cells showed a greater propensity to survive, the cell lines demonstrated poor long-term survival. All grafts were infiltrated with host macrophage/microglial cells throughout their duration of survival. This study demonstrates that immortalized human fetal retinal progenitor cells retain their progenitor characteristics and may therefore have therapeutic potential in strategies that demand a renewable and consistent supply of donor cells for the treatment of degenerative retinal diseases.


Subject(s)
Retina/cytology , Retinal Diseases/therapy , Stem Cells/cytology , Animals , Antigens, Polyomavirus Transforming/metabolism , Biomarkers/metabolism , Cell Line, Transformed , Cell Survival , Fetus/cytology , Graft Survival , Humans , Rats , Retina/metabolism , Stem Cell Transplantation , Stem Cells/metabolism , Temperature
14.
Stem Cells Dev ; 19(2): 175-80, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19569872

ABSTRACT

It is now well accepted that the brain is able to generate newborn neurons from a population of resident multipotential neural stem cells (NSCs) located in two discrete regions of the brain. The capacity for neurogenesis appears to diminish over the lifespan of an organism. Methods to potentiate the proliferation of new neuronal or glial cells within the central nervous system from resident NSCs could have therapeutic potential following an insult, such as stroke, or to replace lost cells as a result of a neurodegenerative disease. We implanted cells from a human NSC cell line, CTX0E03, originally derived from fetal cortical tissue directly into the ventricles of aged rats. CTX0E03 cells have angiogenic properties via secretion of growth factors, so we investigated if the implanted cells would stimulate proliferation of NSCs within the subgranular zone (SGZ) of the dentate gyrus. Bromodeoxyuridine staining demonstrated significantly increased proliferation in the SGZ. Absence of double labeling for human nuclear antigen suggested that the increased proliferation was from endogenous neural progenitor cells. The acute treatment also led to an increased number of immature neurons as demonstrated by immunohistochemical staining for the immature neuronal marker doublecortin. The data suggest that implants of exogenous NSCs may promote regeneration in aging organisms through stimulation of endogenous neurogenesis.


Subject(s)
Aging/physiology , Cell Proliferation , Dentate Gyrus/cytology , Neurons/cytology , Stem Cell Transplantation/methods , Animals , Bromodeoxyuridine/metabolism , Cell Line , Dentate Gyrus/metabolism , Doublecortin Domain Proteins , Doublecortin Protein , Humans , Immunohistochemistry , Male , Microtubule-Associated Proteins/metabolism , Neurogenesis/physiology , Neurons/metabolism , Neurons/transplantation , Neuropeptides/metabolism , Rats , Rats, Inbred F344 , Stem Cells/cytology , Stem Cells/metabolism , Transplantation, Heterologous
15.
Curr Opin Mol Ther ; 11(4): 394-403, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19649984

ABSTRACT

The development of a neural stem cell (NSC) treatment for ischemic brain injury would be of great benefit. This review focuses on recent advances in knowledge and practices toward the development of a successful NSC therapy for patients who have experienced stroke. The data supporting potential mechanisms by which somatic stem cells orchestrate neuroprotection, neurogenesis and vascularization, leading to pronounced functional improvements in stroke-induced deficits are critically reviewed. A model is proposed in which the host's immune system plays a central role in stem cell-induced neural repair. In addition, the source of stem cells and the effect of immunosuppression in clinical trials of stem cell therapy are discussed. The beneficial effects of NSCs in animal models of stroke, combined with a consideration of clinical requirements, can potentially provide an effective NSC treatment for patients who have experienced stroke.


Subject(s)
Brain Ischemia/therapy , Stem Cell Transplantation , Animals , Brain Ischemia/pathology , Humans , Wound Healing
16.
BMC Neurosci ; 10: 86, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19622162

ABSTRACT

BACKGROUND: The human neural stem cell line CTX0E03 was developed for the cell based treatment of chronic stroke disability. Derived from fetal cortical brain tissue, CTX0E03 is a clonal cell line that contains a single copy of the c-mycERTAM transgene delivered by retroviral infection. Under the conditional regulation by 4-hydroxytamoxifen (4-OHT), c-mycERTAM enabled large-scale stable banking of the CTX0E03 cells. In this study, we investigated the fate of this transgene following growth arrest (EGF, bFGF and 4-OHT withdrawal) in vitro and following intracerebral implantation into a mid-cerebral artery occluded (MCAo) rat brain. In vitro, 4-weeks after removing growth factors and 4-OHT from the culture medium, c-mycERTAM transgene transcription is reduced by ~75%. Furthermore, immunocytochemistry and western blotting demonstrated a concurrent decrease in the c-MycERTAM protein. To examine the transcription of the transgene in vivo, CTX0E03 cells (450,000) were implanted 4-weeks post MCAo lesion and analysed for human cell survival and c-mycERTAM transcription by qPCR and qRT-PCR, respectively. RESULTS: The results show that CTX0E03 cells were present in all grafted animal brains ranging from 6.3% to 39.8% of the total cells injected. Prior to implantation, the CTX0E03 cell suspension contained 215.7 (SEM = 13.2) copies of the c-mycERTAM transcript per cell. After implantation the c-mycERTAM transcript copy number per CTX0E03 cell had reduced to 6.9 (SEM = 3.4) at 1-week and 7.7 (SEM = 2.5) at 4-weeks. Bisulfite genomic DNA sequencing of the in vivo samples confirmed c-mycERTAM silencing occurred through methylation of the transgene promoter sequence. CONCLUSION: In conclusion the results confirm that CTX0E03 cells downregulated c-mycERTAM transgene expression both in vitro following EGF, bFGF and 4-OHT withdrawal and in vivo following implantation in MCAo rat brain. The silencing of the c-mycERTAM transgene in vivo provides an additional safety feature of CTX0E03 cells for potential clinical application.


Subject(s)
Cerebral Cortex/transplantation , Fetal Stem Cells/transplantation , Gene Silencing , Infarction, Middle Cerebral Artery/genetics , Animals , Cell Line , Cells, Cultured , Cerebral Cortex/blood supply , Fetal Stem Cells/cytology , Humans , Male , Neurons/cytology , Rats , Rats, Sprague-Dawley , Transgenes , Transplantation, Heterologous
17.
J Neurosci Methods ; 180(1): 52-6, 2009 May 30.
Article in English | MEDLINE | ID: mdl-19427529

ABSTRACT

Cerebral blood flow is impaired during middle cerebral artery occlusion in the rat model of stroke. However, the long term effects on cerebral blood flow following occlusion have received little attention. We examined cerebral blood flow in both sides at multiple time points following middle cerebral artery occlusion of the rat. The bilateral cerebral blood flow in young male Sprague Dawley rats was measured at the time of occlusion, as well as 4, 10 and 16 weeks after occlusion. Under the present experimental conditions, the difference between the left and right side's cerebral blood flow was observed to appear to switch in direction in a visual oscillatory fashion over time in the sham-treated group, whereas the occluded animals consistently showed left side dominance. One group of rats was intraparenchymally transplanted with a human neural stem cell line (CTX0E03 cells) known to have benefit in stroke models. Cerebral blood flow in the lesioned side of the cell-treated group was observed to be improved compared to the untreated rats and to demonstrate a similar oscillatory nature as that observed in sham-treated animals. These findings suggest that multiple bilateral monitoring of cerebral blood flow over time can show effects of stem cell transplantation efficiently as well as functional tests in an animal stroke model.


Subject(s)
Cerebral Arteries/physiopathology , Cerebrovascular Circulation/physiology , Infarction, Middle Cerebral Artery/physiopathology , Laser-Doppler Flowmetry/methods , Stroke/physiopathology , Animals , Biological Clocks/physiology , Cerebral Arteries/pathology , Disease Models, Animal , Functional Laterality/physiology , Graft Survival/physiology , Humans , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/surgery , Male , Optics and Photonics/methods , Predictive Value of Tests , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Sensitivity and Specificity , Stem Cell Transplantation/methods , Stem Cells/physiology , Stroke/pathology , Stroke/surgery , Treatment Outcome
18.
Stem Cells Dev ; 18(2): 307-19, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18554088

ABSTRACT

Human neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype. In vitro, these nestin-positive cells are able to differentiate into tyrosine hydroxylase (TH)-positive neurons and are multipotential. Implantation of the undifferentiated cells into the 6-OHDA substantia nigral lesioned rat model displayed sustained improvements in a number of behavioral tests compared with noncell-implanted, vehicle-injected controls over the course of 6 months. Histological analysis of the brains showed survival of the implanted cells but no evidence of differentiation into TH-positive neurons. An average increase of approximately 26% in host TH immunoreactivity in the lesioned dorsal striatum was observed in the cell-treated groups compared to controls, with no difference in loss of TH cell bodies in the lesioned substantia nigra. Further analysis of the cell lines identified a number of expressed trophic factors, providing a plausible explanation for the effects observed in vivo. The exact mechanisms by which the implanted human neural cell lines provide behavioral improvements in the PD model are not completely understood; however, these findings provide evidence that cell therapy can be a potent treatment for PD acting through a mechanism independent of dopaminergic neuronal cell replacement.


Subject(s)
Behavior, Animal/physiology , Mesencephalon/transplantation , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Prosthesis Implantation , Proto-Oncogene Proteins c-myc/metabolism , Tamoxifen/metabolism , Animals , Brain/enzymology , Brain/pathology , Cell Differentiation , Cell Line, Transformed , Cell Survival , Clone Cells , Disease Models, Animal , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Neurons/cytology , Rats , Rotarod Performance Test , Tyrosine 3-Monooxygenase/metabolism
19.
BMC Neurosci ; 8: 36, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17531091

ABSTRACT

BACKGROUND: Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to neurodegenerative disease. Overexpression of the myc family transcription factors in human primary cells from developing cortex and mesencephalon has produced two stable multipotential NSC lines (ReNcell VM and CX) that can be continuously expanded in monolayer culture. RESULTS: In the undifferentiated state, both ReNcell VM and CX are nestin positive and have resting membrane potentials of around -60 mV but do not display any voltage-activated conductances. As initially hypothesized, using standard methods (stdD) for differentiation, both cell lines can form neurons, astrocytes and oligodendrocytes according to immunohistological characteristics. However it became clear that this was not true for electrophysiological features which designate neurons, such as the firing of action potentials. We have thus developed a new differentiation protocol, designated 'pre-aggregation differentiation' (preD) which appears to favor development of electrophysiologically functional neurons and to lead to an increase in dopaminergic neurons in the ReNcell VM line. In contrast, the protocol used had little effect on the differentiation of ReNcell CX in which dopaminergic differentiation was not observed. Moreover, after a week of differentiation with the preD protocol, 100% of ReNcell VM featured TTX-sensitive Na+-channels and fired action potentials, compared to 25% after stdD. Currents via other voltage-gated channels did not appear to depend on the differentiation protocol. ReNcell CX did not display the same electrophysiological properties as the VM line, generating voltage-dependant K+ currents but no Na+ currents or action potentials under either stdD or preD differentiation. CONCLUSION: These data demonstrate that overexpression of myc in NSCs can be used to generate electrophysiologically active neurons in culture. Development of a functional neuronal phenotype may be dependent on parameters of isolation and differentiation of the cell lines, indicating that not all human NSCs are functionally equivalent.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/cytology , Mesencephalon/cytology , Neurons/physiology , Stem Cells/physiology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Fetus , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Nerve Tissue Proteins/metabolism , Patch-Clamp Techniques/methods , Stem Cells/drug effects , Time Factors , Tubulin/metabolism , Tyrosine 3-Monooxygenase/metabolism
20.
Exp Neurol ; 199(1): 143-55, 2006 May.
Article in English | MEDLINE | ID: mdl-16464451

ABSTRACT

Transplantation of neural stem cells into the brain is a novel approach to the treatment of chronic stroke disability. For clinical application, safety and efficacy of defined, stable cell lines produced under GMP conditions are required. To this end, a human neural stem cell line, CTX0E03, was derived from human somatic stem cells following genetic modification with a conditional immortalizing gene, c-mycER(TAM). This transgene generates a fusion protein that stimulates cell proliferation in the presence of a synthetic drug 4-hydroxy-tamoxifen (4-OHT). The cell line is clonal, expands rapidly in culture (doubling time 50-60 h) and has a normal human karyotype (46 XY). In the absence of growth factors and 4-OHT, the cells undergo growth arrest and differentiate into neurons and astrocytes. Transplantation of CTX0E03 in a rat model of stroke (MCAo) caused statistically significant improvements in both sensorimotor function and gross motor asymmetry at 6-12 weeks post-grafting. In addition, cell migration and long-term survival in vivo were not associated with significant cell proliferation. These data indicate that CTX0E03 has the appropriate biological and manufacturing characteristics necessary for development as a therapeutic cell line.


Subject(s)
Cerebral Cortex/cytology , Infarction, Middle Cerebral Artery/surgery , Neuroepithelial Cells/physiology , Stem Cell Transplantation , Stem Cells/physiology , Analysis of Variance , Animals , Behavior, Animal , Cell Differentiation/physiology , Cell Movement , Cerebral Cortex/embryology , Clone Cells , Disease Models, Animal , Dose-Response Relationship, Drug , Fetus , Humans , Hydroxytestosterones/pharmacology , Male , Motor Activity/physiology , Neuroepithelial Cells/cytology , RNA, Messenger/biosynthesis , Rats , Reverse Transcriptase Polymerase Chain Reaction/methods , Stem Cell Transplantation/methods , Telomerase/drug effects , Telomerase/metabolism , Time Factors , Transduction, Genetic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...