Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 117(28): 8611-9, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23758572

ABSTRACT

The present work investigates the formation of well-defined heteroaggregates from a binary mixture of a red and a yellow azo-dyestuff in the presence of Mg(2+) ions. Combined static and dynamic light scattering together with laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) has been applied to characterize the states of the pure red dye and the pure yellow dye as well as of their mixture in aqueous solution without Mg(2+). These experiments indicated that a structural reorganization on a molecular scale takes place as soon as the two dyes are combined. Solutions of the combined red and yellow dye contain micelle-like mixed entities with a size of a few tenths of nanometers. Upon the addition of Mg(2+), these micelles vanish in favor of elongated heteroaggregates, which grow by a stepwise addition of smaller building units. As unraveled by UV/vis spectroscopy, the heteroaggregates that are formed from the red and yellow azo dye in the presence of Mg(2+) obey a stoichiometric ratio of the two components of 1:1. A new multiangle scattering instrument allowed us for the first time to follow this aggregation process at the stoichiometric ratio by time-resolved combined static and dynamic light scattering, thereby providing further aspects of the worm-like nature of the growing heteroaggregates.

2.
Langmuir ; 23(14): 7715-23, 2007 Jul 03.
Article in English | MEDLINE | ID: mdl-17547425

ABSTRACT

The formation of temperature-, concentration-, and pH-responsive hydrogels composed of the symmetric long-chain bolaamphiphile dotriacontane-1,1'-diyl bis[[2-(dimethylammonio)ethyl]phosphate] (Me(2)PE-C32-Me(2)PE) was investigated by rheological, scattering, and spectroscopic techniques. At pH 5, this bolaamphiphile is known to form a dense network of helically structured nanofibers (Köhler et al. Soft Matter 2006, 2, 77-86). Rheological measurements and dynamic light scattering were used to describe the macroscopic behavior of the hydrogels. Small-angle neutron scattering (SANS) and time-resolved static light scattering were applied to get information about the morphology of the self-assembled aggregates. Finally, solid-state 31P NMR spectroscopy was used to gain insight into the mobility of the bolaamphiphile molecules within the fiber aggregates. In comparison with the previously examined trimethylammonio analogue PC-C32-PC, which forms temperature-dependent hydrogels, Me(2)PE-C32-Me(2)PE exhibits additional concentration- and pH-dependent gelling properties. The significantly higher stability of the Me(2)PE-C32-Me(2)PE hydrogel is supported by the SANS data, which indicate the presence of fiber aggregates up to 50 degrees C.


Subject(s)
Diacetyl/analogs & derivatives , Hydrogels/chemistry , Alkanes , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Methylamines/chemistry , Neutrons , Rheology , Scattering, Small Angle , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...