Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Discov Technol ; 17(3): 365-375, 2020.
Article in English | MEDLINE | ID: mdl-30973110

ABSTRACT

BACKGROUND: Tuberculosis (TB) is an infection disease caused by Mycobacterium tuberculosis (Mtb) bacteria. One of the main causes of mortality from TB is the problem of Mtb resistance to known drugs. OBJECTIVE: The goal of this work is to identify potent small molecule anti-TB agents by machine learning, synthesis and biological evaluation. METHODS: The On-line Chemical Database and Modeling Environment (OCHEM) was used to build predictive machine learning models. Seven compounds were synthesized and tested in vitro for their antitubercular activity against H37Rv and resistant Mtb strains. RESULTS: A set of predictive models was built with OCHEM based on a set of previously synthesized isoniazid (INH) derivatives containing a thiazole core and tested against Mtb. The predictive ability of the models was tested by a 5-fold cross-validation, and resulted in balanced accuracies (BA) of 61-78% for the binary classifiers. Test set validation showed that the models could be instrumental in predicting anti- TB activity with a reasonable accuracy (with BA = 67-79 %) within the applicability domain. Seven designed compounds were synthesized and demonstrated activity against both the H37Rv and multidrugresistant (MDR) Mtb strains resistant to rifampicin and isoniazid. According to the acute toxicity evaluation in Daphnia magna neonates, six compounds were classified as moderately toxic (LD50 in the range of 10-100 mg/L) and one as practically harmless (LD50 in the range of 100-1000 mg/L). CONCLUSION: The newly identified compounds may represent a starting point for further development of therapies against Mtb. The developed models are available online at OCHEM http://ochem.eu/article/11 1066 and can be used to virtually screen for potential compounds with anti-TB activity.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Machine Learning , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/therapeutic use , Daphnia , Datasets as Topic , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Microbial Sensitivity Tests , Models, Chemical , Rifampin/pharmacology , Rifampin/therapeutic use , Toxicity Tests, Acute , Tuberculosis, Multidrug-Resistant/microbiology
2.
Chem Biol Drug Des ; 92(1): 1272-1278, 2018 07.
Article in English | MEDLINE | ID: mdl-29536635

ABSTRACT

The problem of designing new antitubercular drugs against multiple drug-resistant tuberculosis (MDR-TB) was addressed using advanced machine learning methods. As there are only few published measurements against MDR-TB, we collected a large literature data set and developed models against the non-resistant H37Rv strain. The predictive accuracy of these models had a coefficient of determination q2  = .7-.8 (regression models) and balanced accuracies of about 80% (classification models) with cross-validation and independent test sets. The models were applied to screen a virtual chemical library, which was designed to have MDR-TB activity. The seven most promising compounds were identified, synthesized and tested. All of them showed activity against the H37Rv strain, and three molecules demonstrated activity against the MDR-TB strain. The docking analysis indicated that the discovered molecules could bind enoyl reductase, InhA, which is required in mycobacterial cell wall development. The models are freely available online (http://ochem.eu/article/103868) and can be used to predict potential anti-TB activity of new chemicals.


Subject(s)
Antitubercular Agents/chemical synthesis , Drug Design , Isoniazid/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Machine Learning , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...