Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175844

ABSTRACT

Phytochrome (phy) system in plants comprising a small number of phytochromes with phyA and phyB as major ones is responsible for acquiring light information in the red-far-red region of the solar spectrum. It provides optimal strategy for plant development under changing light conditions throughout all its life cycle beginning from seed germination and seedling establishment to fruiting and plant senescence. The phyA was shown to participate in the regulation of this cycle which is especially evident at its early stages. It mediates three modes of reactions-the very low and low fluence responses (VLFR and LFR) and the high irradiance responses (HIR). The phyA is the sole light receptor in the far-red spectral region responsible for plant's survival under a dense plant canopy where light is enriched with the far-red component. Its appearance is believed to be one of the main factors of plants' successful evolution. So far, it is widely accepted that one molecular phyA species is responsible for its complex functional manifestations. In this review, the evidence of the existence of two distinct phyA types-major, light-labile and soluble phyA' and minor, relatively light-stable and amphiphilic phyA″-is presented as what may account for the diverse modes of phyA action.


Subject(s)
Arabidopsis Proteins , Phytochrome , Phytochrome A/genetics , Phytochrome B/genetics , Light , Phytochrome/genetics , Plants/genetics , Arabidopsis Proteins/genetics , Mutation
2.
Photochem Photobiol ; 96(4): 750-767, 2020 07.
Article in English | MEDLINE | ID: mdl-31869438

ABSTRACT

The evolution of oxygenic photosynthesis, respiration and photoperception are connected with the appearance of cyanobacteria. The key compounds, which are involved in these processes, are tetrapyrroles: open chain - bilins and cyclic - chlorophylls and heme. The latter are characterized by their covalent bond with the apoprotein resulting in the formation of biliproteins. This type of photoreceptors is unique in that it can perform important and opposite functions-light-harvesting in photosynthesis with the participation of phycobiliproteins and photoperception mediated by phycochromes and phytochromes. In this review, cyanobacterial phycobiliproteins and phytochrome Cph1 are considered from a comparative point of view. Structural features of these pigments, which provide their contrasting photophysical and photochemical characteristics, are analyzed. The determining factor in the case of energy migration with the participation of phycobiliproteins is blocking the torsional relaxations of the chromophore, its D-ring, in the excited state and their freedom, in the case of phytochrome photoisomerization. From the energetics point of view, this distinction is preconditioned by the height of the activation barrier for the photoreaction and relaxation in the excited state, which depends on the degree of the chromophore fixation by its protein surroundings.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/radiation effects , Photochemical Processes , Phycobiliproteins/metabolism , Phytochrome/metabolism , Pigments, Biological/metabolism , Cyanobacteria/metabolism , Photosynthesis
3.
Funct Plant Biol ; 45(2): 150-159, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291029

ABSTRACT

Phytochrome A (phyA) mediates different photoresponses what may be connected with the existence of its two types, phyA' and phyA'', differing by spectroscopic, photochemical and functional properties. We investigated a role of phyA phosphorylation in their formation turning to transgenic Arabidopsis thaliana (L. Heynh.) phyA or phyAphyB mutants overexpressing rice wild-type phyA (phyA WT) or mutant phyA (phyA SA) with the first 10 serines substituted by alanines. This prevents phyA phosphorylation at these sites and modifies photoresponses. Etiolated seedlings were employed and phyA parameters were evaluated with the use of low temperature fluorescence spectroscopy and photochemistry. Germination of seeds was induced by white light (WL) pre-treatment for 15min or 3h. Emission spectra of rice phyA WT and phyA SA were similar and their total content was comparable. However, the phyA'/phyA'' proportion in phyA WT was high and varied with the duration of the WL pre-treatment, whereas in phyA SA it was substantially shifted towards phyA'' and did not depend on the pre-illumination. This suggests that phyA SA comprises primarily or exclusively the phyA'' pool and supports the notion that the two phyA types differ by the state of serine phosphorylation. phyA'' was also found to be much more effective in the germination induction than phyA'.

4.
Photochem Photobiol ; 87(1): 160-73, 2011.
Article in English | MEDLINE | ID: mdl-21091956

ABSTRACT

Cyanobacterial phytochromes are a diverse family of light receptors controlling various biological functions including phototaxis. In addition to canonical bona fide phytochromes of the well characterized Cph1/plant-like clade, cyanobacteria also harbor phytochromes that absorb green, violet or blue light. The Synechocystis PCC 6803 Cph2 photoreceptor, a phototaxis inhibitor, is unconventional in bearing two distinct chromophore-binding GAF domains. Whereas the C-terminal GAF domain is most likely involved in blue-light perception, the first two domains correspond to a Cph1-like photosensory module lacking the PAS domain. Biochemical and spectroscopic studies show that this region switches between red (P(r) ) and far-red (P(fr) ) absorbing states. Unlike Cph1, the P(fr) state of Cph2 decays rapidly in darkness. Mutations close to the PCB chromophore further destabilize the P(fr) state without drastically affecting the spectroscopic features such as the quantum efficiency of P(r) →P(fr) conversion, fluorescence, or the Resonance-Raman signature of the chromophore. Overall, the PAS-less photosensory module of Cph2 resembles Cph1 including its mode of isomerisation, but the P(fr) state is unstable.


Subject(s)
Bacterial Proteins/metabolism , Phytochrome/metabolism , Synechocystis/metabolism , Bacterial Proteins/chemistry , Base Sequence , Circular Dichroism , DNA Primers , Light , Phytochrome/chemistry , Spectrometry, Fluorescence , Spectrum Analysis, Raman
5.
J Biol Chem ; 281(45): 34421-9, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-16966335

ABSTRACT

Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.


Subject(s)
Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , Phytochrome A/metabolism , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Darkness , Glucuronidase/genetics , Green Fluorescent Proteins/genetics , Hypocotyl/growth & development , Light , Mutation , Photoreceptor Cells/metabolism , Phytochrome A/genetics , Plants, Genetically Modified , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Seeds/physiology , Seeds/radiation effects , Signal Transduction
6.
Photochem Photobiol Sci ; 3(11-12): 1058-62, 2004.
Article in English | MEDLINE | ID: mdl-15570396

ABSTRACT

Phytochrome (phy) A in its two native isoforms (phyA' and phyA") and the active (Pchlide(655)) and inactive (Pchlide(633)) protochlorophyllides were investigated by low-temperature fluorescence spectroscopy in the tips of rice (Oryza sativa L. Japonica cv Nihonmasari) coleoptiles from wild type (WT) and the jasmonate-deficient mutant hebiba. The seedlings were either grown in the dark or under pulsed (FRp) or continuous (FRc) far-red light (lambda(a) >/= 720 nm) of equal fluences. In the dark, the mutant had a long mesocotyl and a short coleoptile, whereas the situation was reversed under FR: short mesocotyl and long coleoptile, suggesting that the effect is mediated by phyA. Under these conditions the WT displayed a short coleoptile and emergence of the first leaf. In the dark, the spectroscopic and photochemical properties of phyA, its content and the proportion of its two pools, phyA' and phyA", were virtually identical between WT and hebiba. However, the total content of protochlorophyllides was higher in the mutant. Upon illumination with FRc, [phyA] declined in the WT and the ratio between phyA' and phyA" shifted towards phyA". In hebiba, the light-induced decline of [phyA] was less pronounced and the ratio between phyA' and phyA" did not shift. Moreover, in the WT, FRp stimulated the biosynthesis of Pchlide(655), whereas FRc was inhibiting. In contrast, in the mutant, both FRp and FRc stimulated the synthesis of Pchlide(655). This means that FRc caused the opposite effect in hebiba. This difference correlates with a slower photodestruction of primarily the light-labile phyA' pool in hebiba.


Subject(s)
Oryza/genetics , Phytochrome/radiation effects , Protein Serine-Threonine Kinases/radiation effects , Protochlorophyllide/biosynthesis , Cyclopentanes , Light , Mutation , Oxylipins , Phenotype , Phytochrome/chemistry , Phytochrome A , Protein Serine-Threonine Kinases/chemistry , Protochlorophyllide/radiation effects , Seedlings/genetics , Seedlings/growth & development
7.
Plant Physiol ; 135(4): 2186-95, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15286297

ABSTRACT

Phytochrome A (phyA) is an important photoreceptor controlling many processes throughout the plant life cycle. It is unique within the phytochrome family for its ability to mediate photomorphogenic responses to continuous far-red light and for the strong photocontrol of its transcript level and protein stability. Here we describe a dominant mutant of garden pea (Pisum sativum) that displays dramatically enhanced responses to light, early photoperiod-independent flowering, and impaired photodestruction of phyA. The mutant carries a single base substitution in the PHYA gene that is genetically inseparable from the mutant phenotype. This substitution is predicted to direct the replacement of a conserved Ala in an N-terminal region of PHYA that is highly divergent between phyA and other phytochromes. This result identifies a region of the phyA photoreceptor molecule that may play an important role in its fate after photoconversion.


Subject(s)
Genes, Dominant , Genes, Plant , Phytochrome/genetics , Pisum sativum/metabolism , Amino Acid Sequence , Base Sequence , Conserved Sequence , DNA Primers , Light , Molecular Sequence Data , Pisum sativum/genetics , Pisum sativum/radiation effects , Phenotype , Phytochrome/metabolism , Phytochrome/radiation effects , Phytochrome A , RNA, Plant/genetics , RNA, Plant/isolation & purification , Seedlings/genetics , Seedlings/metabolism , Seedlings/radiation effects , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...