Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 8(5): 1035-1045, 2024 May.
Article in English | MEDLINE | ID: mdl-38684738

ABSTRACT

The transition from hunting-gathering to agriculture stands as one of the most important dietary revolutions in human history. Yet, due to a scarcity of well-preserved human remains from Pleistocene sites, little is known about the dietary practices of pre-agricultural human groups. Here we present the isotopic evidence of pronounced plant reliance among Late Stone Age hunter-gatherers from North Africa (15,000-13,000 cal BP), predating the advent of agriculture by several millennia. Employing a comprehensive multi-isotopic approach, we conducted zinc (δ66Zn) and strontium (87Sr/86Sr) analysis on dental enamel, bulk carbon (δ13C) and nitrogen (δ15N) and sulfur (δ34S) isotope analysis on dentin and bone collagen, and single amino acid analysis on human and faunal remains from Taforalt (Morocco). Our results unequivocally demonstrate a substantial plant-based component in the diets of these hunter-gatherers. This distinct dietary pattern challenges the prevailing notion of high reliance on animal proteins among pre-agricultural human groups. It also raises intriguing questions surrounding the absence of agricultural development in North Africa during the early Holocene. This study underscores the importance of investigating dietary practices during the transition to agriculture and provides insights into the complexities of human subsistence strategies across different regions.


Subject(s)
Diet , Humans , Morocco , History, Ancient , Bone and Bones/chemistry , Archaeology , Animals , Dental Enamel/chemistry , Strontium Isotopes/analysis
2.
iScience ; 27(4): 109432, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550979

ABSTRACT

Palaeoproteomic analysis of skeletal proteomes is used to provide taxonomic identifications for an increasing number of archaeological specimens. The success rate depends on a range of taphonomic factors and differences in the extraction protocols employed. By analyzing 12 archaeological bone specimens from two archaeological sites, we demonstrate that reducing digestion duration from 18 to 3 hours has no measurable impact on the obtained taxonomic identifications. Peptide marker recovery, COL1 sequence coverage, or proteome complexity are also not significantly impacted. Although we observe minor differences in sequence coverage and glutamine deamidation, these are not consistent across our dataset. A 6-fold reduction in digestion time reduces electricity consumption, and therefore CO2 emission intensities. We furthermore demonstrate that working in 96-well plates further reduces electricity consumption by 60%, in comparison to individual microtubes. Reducing digestion time therefore has no impact on the taxonomic identifications, while reducing the environmental impact of palaeoproteomic projects.

3.
Nat Ecol Evol ; 8(3): 578-588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38297139

ABSTRACT

The spread of Homo sapiens into new habitats across Eurasia ~45,000 years ago and the concurrent disappearance of Neanderthals represents a critical evolutionary turnover in our species' history. 'Transitional' technocomplexes, such as the Lincombian-Ranisian-Jerzmanowician (LRJ), characterize the European record during this period but their makers and evolutionary significance have long remained unclear. New evidence from Ilsenhöhle in Ranis, Germany, now provides a secure connection of the LRJ to H. sapiens remains dated to ~45,000 years ago, making it one of the earliest forays of our species to central Europe. Using many stable isotope records of climate produced from 16 serially sampled equid teeth spanning ~12,500 years of LRJ and Upper Palaeolithic human occupation at Ranis, we review the ability of early humans to adapt to different climate and habitat conditions. Results show that cold climates prevailed across LRJ occupations, with a temperature decrease culminating in a pronounced cold excursion at ~45,000-43,000 cal BP. Directly dated H. sapiens remains confirm that humans used the site even during this very cold phase. Together with recent evidence from the Initial Upper Palaeolithic, this demonstrates that humans operated in severe cold conditions during many distinct early dispersals into Europe and suggests pronounced adaptability.


Subject(s)
Hominidae , Neanderthals , Humans , Europe , Fossils , Germany
4.
Nat Ecol Evol ; 8(3): 564-577, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38297138

ABSTRACT

Recent excavations at Ranis (Germany) identified an early dispersal of Homo sapiens into the higher latitudes of Europe by 45,000 years ago. Here we integrate results from zooarchaeology, palaeoproteomics, sediment DNA and stable isotopes to characterize the ecology, subsistence and diet of these early H. sapiens. We assessed all bone remains (n = 1,754) from the 2016-2022 excavations through morphology (n = 1,218) or palaeoproteomics (zooarchaeology by mass spectrometry (n = 536) and species by proteome investigation (n = 212)). Dominant taxa include reindeer, cave bear, woolly rhinoceros and horse, indicating cold climatic conditions. Numerous carnivore modifications, alongside sparse cut-marked and burnt bones, illustrate a predominant use of the site by hibernating cave bears and denning hyaenas, coupled with a fluctuating human presence. Faunal diversity and high carnivore input were further supported by ancient mammalian DNA recovered from 26 sediment samples. Bulk collagen carbon and nitrogen stable isotope data from 52 animal and 10 human remains confirm a cold steppe/tundra setting and indicate a homogenous human diet based on large terrestrial mammals. This lower-density archaeological signature matches other Lincombian-Ranisian-Jerzmanowician sites and is best explained by expedient visits of short duration by small, mobile groups of pioneer H. sapiens.


Subject(s)
Reindeer , Ursidae , Humans , Horses , Animals , Infant, Newborn , Germany , Diet , Bone and Bones/chemistry , Europe , DNA , Mammals , DNA, Ancient , Nitrogen Isotopes/analysis
5.
Nature ; 626(7998): 341-346, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297117

ABSTRACT

The Middle to Upper Palaeolithic transition in Europe is associated with the regional disappearance of Neanderthals and the spread of Homo sapiens. Late Neanderthals persisted in western Europe several millennia after the occurrence of H. sapiens in eastern Europe1. Local hybridization between the two groups occurred2, but not on all occasions3. Archaeological evidence also indicates the presence of several technocomplexes during this transition, complicating our understanding and the association of behavioural adaptations with specific hominin groups4. One such technocomplex for which the makers are unknown is the Lincombian-Ranisian-Jerzmanowician (LRJ), which has been described in northwestern and central Europe5-8. Here we present the morphological and proteomic taxonomic identification, mitochondrial DNA analysis and direct radiocarbon dating of human remains directly associated with an LRJ assemblage at the site Ilsenhöhle in Ranis (Germany). These human remains are among the earliest directly dated Upper Palaeolithic H. sapiens remains in Eurasia. We show that early H. sapiens associated with the LRJ were present in central and northwestern Europe long before the extinction of late Neanderthals in southwestern Europe. Our results strengthen the notion of a patchwork of distinct human populations and technocomplexes present in Europe during this transitional period.


Subject(s)
Human Migration , Animals , Humans , Body Remains/metabolism , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Europe , Extinction, Biological , Fossils , Germany , History, Ancient , Neanderthals/classification , Neanderthals/genetics , Neanderthals/metabolism , Proteomics , Radiometric Dating , Human Migration/history , Time Factors
6.
J Hum Evol ; 167: 103198, 2022 06.
Article in English | MEDLINE | ID: mdl-35533625

ABSTRACT

The expansion of Homo sapiens and our interaction with local environments, including the replacement or absorption of local populations, is a key component in understanding the evolution of our species. Of special interest are artifacts made from hard animal tissues from layers at Bacho Kiro Cave (Bulgaria) that have been attributed to the Initial Upper Paleolithic. The Initial Upper Paleolithic is characterized by Levallois-like blade technologies that can co-occur with bone tools and ornaments and likely represents the dispersal of H. sapiens into several regions throughout Eurasia starting by 45 ka or possibly earlier. Osseous artifacts from the Initial Upper Paleolithic are important components of this record and have the potential to contribute to our understanding of group interactions and population movements. Here, we present a zooarchaeological, technological, and functional analysis of the diverse and sizable osseous artifact collection from Bacho Kiro Cave. Animal raw material sources are consistent with taxa found within the faunal assemblage including cervids, large bovids, and cave bears. A variety of bone tool morphologies, both formal and informal, indicate a diverse technological approach for conducting various on-site activities, many of which were focused on the processing of animal skins, likely for cold weather clothing. Technological flexibility is also evident in the manufacture of personal ornaments, which were made primarily from carnivore teeth, especially cave bear, though herbivore teeth and small beads are also represented. The osseous artifacts from Bacho Kiro Cave provide a series of insights into the bone technology and indirectly on the social aspects of these humans in southeast Europe, and when placed within the broader Initial Upper Paleolithic context, both regional and shared behaviors are evidently indicating widespread innovation and complexity. This is especially significant given the location and chronology of the site in the context of H. sapiens dispersals.


Subject(s)
Archaeology , Hominidae , Animals , Bulgaria , Caves , Fossils , Technology
8.
Sci Rep ; 11(1): 23611, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880290

ABSTRACT

Bone surface modifications are crucial for understanding human subsistence and dietary behaviour, and can inform about the techniques employed in the production and use of bone tools. Permission to destructively sample such unique artefacts is not always granted. The recent development of non-destructive proteomic extraction techniques has provided some alternatives for the analysis of rare and culturally significant artefacts, including bone tools and personal ornaments. The Eraser Extraction Method (EEM), first developed for ZooMS analysis of parchment, has recently been applied to bone and ivory specimens. To test the potential impact of the EEM on ancient bone surfaces, we analyse six anthropogenically modified Palaeolithic bone specimens from Bacho Kiro Cave (Bulgaria) through a controlled sampling experiment using qualitative and 3D quantitative microscopy. Although the overall bone topography is generally preserved, our findings demonstrate a slight flattening of the microtopography alongside the formation of micro-striations associated with the use of the eraser for all bone specimens. Such modifications are similar to ancient use-wear traces. We therefore consider the EEM a destructive sampling approach for Palaeolithic bone surfaces. Together with low ZooMS success rates in some of the reported studies, the EEM might not be a suitable approach to taxonomically identify Pleistocene bone specimens.


Subject(s)
Bone and Bones/metabolism , Fossils , Proteomics/methods , Archaeology , Bulgaria , Humans , Surface Properties
9.
Sci Rep ; 11(1): 22078, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34837003

ABSTRACT

Evidence of mobiliary art and body augmentation are associated with the cultural innovations introduced by Homo sapiens at the beginning of the Upper Paleolithic. Here, we report the discovery of the oldest known human-modified punctate ornament, a decorated ivory pendant from the Paleolithic layers at Stajnia Cave in Poland. We describe the features of this unique piece, as well as the stratigraphic context and the details of its chronometric dating. The Stajnia Cave plate is a personal 'jewellery' object that was created 41,500 calendar years ago (directly radiocarbon dated). It is the oldest known of its kind in Eurasia and it establishes a new starting date for a tradition directly connected to the spread of modern Homo sapiens in Europe.

10.
J Hum Evol ; 161: 103074, 2021 12.
Article in English | MEDLINE | ID: mdl-34628301

ABSTRACT

The behavioral dynamics underlying the expansion of Homo sapiens into Europe remains a crucial topic in human evolution. Owing to poor bone preservation, past studies have strongly focused on the Initial Upper Paleolithic (IUP) stone tool record. Recent excavations and extensive radiocarbon dating at Bacho Kiro Cave (Bulgaria) pushed back the arrival of IUP H. sapiens into Europe to ca. 45,000 years ago. This site has exceptional bone preservation, and we present the study of 7431 faunal remains from across two IUP layers (I and J) and one Middle Paleolithic layer (K). We identified a shift in site use and occupation intensity through time, marked by increased find density and human modifications in Layer I. Alongside a decrease in carnivore presence and seasonality data demonstrating human presence in all seasons, this indicates a more frequent or prolonged occupation of the site by IUP groups. Contrarily, the dietary focus across the IUP and Middle Paleolithic layers is similar, centered on the exploitation of species from a range of habitats including Bos/Bison, Cervidae, Equidae, and Caprinae. While body parts of large herbivores were selectively transported into the site, the bear remains suggest that these animals died in the cave itself. A distinct aspect of the IUP occupation is an increase in carnivore remains with human modifications, including these cave bears but also smaller taxa (e.g., Canis lupus, Vulpes vulpes). This can be correlated with their exploitation for pendants, and potentially for skins and furs. At a broader scale, we identified similarities in subsistence behavior across IUP sites in Europe and western Asia. It appears that the first IUP occupations were less intense with find densities and human modifications increasing in succeeding IUP layers. Moreover, the exploitation of small game appears to be limited across IUP sites, while carnivore exploitation seems a recurrent strategy.


Subject(s)
Archaeology , Hominidae , Animals , Bulgaria , Caves , Europe , Fossils
11.
Nature ; 592(7853): 253-257, 2021 04.
Article in English | MEDLINE | ID: mdl-33828320

ABSTRACT

Modern humans appeared in Europe by at least 45,000 years ago1-5, but the extent of their interactions with Neanderthals, who disappeared by about 40,000 years ago6, and their relationship to the broader expansion of modern humans outside Africa are poorly understood. Here we present genome-wide data from three individuals dated to between 45,930 and 42,580 years ago from Bacho Kiro Cave, Bulgaria1,2. They are the earliest Late Pleistocene modern humans known to have been recovered in Europe so far, and were found in association with an Initial Upper Palaeolithic artefact assemblage. Unlike two previously studied individuals of similar ages from Romania7 and Siberia8 who did not contribute detectably to later populations, these individuals are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.


Subject(s)
DNA, Ancient/analysis , Genome, Human/genetics , Neanderthals/genetics , Alleles , Americas/ethnology , Animals , Archaeology , Bulgaria/ethnology , Caves , Asia, Eastern/ethnology , Female , History, Ancient , Humans , Male , Phylogeny
12.
Nature ; 581(7808): 299-302, 2020 05.
Article in English | MEDLINE | ID: mdl-32433609

ABSTRACT

The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4-6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8.


Subject(s)
Fossils , Human Migration/history , Animals , Asia , Bone and Bones/metabolism , Bulgaria , Caves , DNA, Ancient/isolation & purification , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Europe , History, Ancient , Humans , Neanderthals/genetics , Phylogeny , Tool Use Behavior , Tooth/anatomy & histology , Tooth/metabolism
13.
Sci Rep ; 10(1): 7746, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385291

ABSTRACT

Five nearly identical fragments of specialized bone tools, interpreted as lissoirs (French for "smoothers"), have been found at two Middle Paleolithic sites in southwest France. The finds span three separate archaeological deposits, suggesting continuity in the behavior of late Neandertals. Using standard morphological assessments, we determined that the lissoirs were produced on ribs of medium-sized ungulates. However, since these bones are highly fragmented and anthropogenically modified, species determinations were challenging. Also, conservative curation policy recommends minimizing destructive sampling of rare, fragile, or small artifacts for molecular identification methods. To better understand raw material selection for these five lissoirs, we reassess their taxonomy using a non-destructive ZooMS methodology based on triboelectric capture of collagen. We sampled four storage containers and obtained identifiable MALDI-TOF MS collagen fingerprints, all indicative of the same taxonomic clade, which includes aurochs and bison (Bos sp. and Bison sp.). The fifth specimen, which was stored in a plastic bag, provided no useful MALDI-TOF MS spectra. We show that the choice of large bovid ribs in an archaeological layer dominated by reindeer (Rangifer tarandus) demonstrates strategic selection by these Neandertals. Furthermore, our results highlight the value of a promising technique for the non-destructive analysis of bone artifacts.


Subject(s)
Bone and Bones , Neanderthals , Tool Use Behavior , Animals , Archaeology
14.
Nat Ecol Evol ; 4(6): 794-801, 2020 06.
Article in English | MEDLINE | ID: mdl-32393865

ABSTRACT

The stratigraphy at Bacho Kiro Cave, Bulgaria, spans the Middle to Upper Palaeolithic transition, including an Initial Upper Palaeolithic (IUP) assemblage argued to represent the earliest arrival of Upper Palaeolithic Homo sapiens in Europe. We applied the latest techniques in 14C dating to an extensive dataset of newly excavated animal and human bones to produce a robust, high-precision radiocarbon chronology for the site. At the base of the stratigraphy, the Middle Palaeolithic (MP) occupation dates to >51,000 yr BP. A chronological gap of over 3,000 years separates the MP occupation from the occupation of the cave by H. sapiens, which extends to 34,000 cal BP. The extensive IUP assemblage, now associated with directly dated H. sapiens fossils at this site, securely dates to 45,820-43,650 cal BP (95.4% probability), probably beginning from 46,940 cal BP (95.4% probability). The results provide chronological context for the early occupation of Europe by Upper Palaeolithic H. sapiens.


Subject(s)
Caves , Radiometric Dating , Animals , Bulgaria , Europe , Fossils , Humans
15.
Sci Rep ; 9(1): 12350, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451791

ABSTRACT

Collagen type I fingerprinting (ZooMS) has recently been used to provide either palaeoenvironmental data or to identify additional hominin specimens in Pleistocene contexts, where faunal assemblages are normally highly fragmented. However, its potential to elucidate hominin subsistence behaviour has been unexplored. Here, ZooMS and zooarchaeology have been employed in a complementary approach to investigate bone assemblages from Final Mousterian and Uluzzian contexts at Fumane cave (Italy). Both approaches produced analogous species composition, but differ significantly in species abundance, particularly highlighted by a six fold-increase in the quantity of Bos/Bison remains in the molecularly identified component. Traditional zooarchaeological methods would therefore underestimate the proportion of Bos/Bison in these levels to a considerable extent. We suggest that this difference is potentially due to percussion-based carcass fragmentation of large Bos/Bison bone diaphyses. Finally, our data demonstrates high variability in species assignment to body size classes based on bone cortical thickness and fragment size. Thus, combining biomolecular and traditional zooarchaeological methods allows us to refine our understanding of bone assemblage composition associated with hominin occupation at Fumane.


Subject(s)
Archaeology , Hominidae/physiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Bone and Bones/anatomy & histology , Fossils , Geography , Italy
SELECTION OF CITATIONS
SEARCH DETAIL
...