Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Bull Entomol Res ; 108(6): 792-799, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29441836

ABSTRACT

Arthropod communities in the tropics are increasingly impacted by rapid changes in land use. Because species showing distinct seasonal patterns of activity are thought to be at higher risk of climate-related extirpation, global warming is generally considered a lower threat to arthropod biodiversity in the tropics than in temperate regions. To examine changes associated with land use and weather variables in tropical arthropod communities, we deployed Malaise traps at three major anthropogenic forests (secondary reserve forest, oil palm forest, and urban ornamental forest (UOF)) in Peninsular Malaysia and collected arthropods continuously for 12 months. We used metabarcoding protocols to characterize the diversity within weekly samples. We found that changes in the composition of arthropod communities were significantly associated with maximum temperature in all the three forests, but shifts were reversed in the UOF compared with the other forests. This suggests arthropods in forests in Peninsular Malaysia face a double threat: community shifts and biodiversity loss due to exploitation and disturbance of forests which consequently put species at further risk related to global warming. We highlight the positive feedback mechanism of land use and temperature, which pose threats to the arthropod communities and further implicates ecosystem functioning and human well-being. Consequently, conservation and mitigation plans are urgently needed.


Subject(s)
Arthropods/physiology , Biodiversity , Forests , Rain , Animals , Arecaceae/growth & development , Malaysia , Population Dynamics , Seasons , Temperature
2.
Bull Entomol Res ; 105(6): 717-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26344799

ABSTRACT

Metabarcoding, the coupling of DNA-based species identification and high-throughput sequencing, offers enormous promise for arthropod biodiversity studies but factors such as cost, speed and ease-of-use of bioinformatic pipelines, crucial for making the leapt from demonstration studies to a real-world application, have not yet been adequately addressed. Here, four published and one newly designed primer sets were tested across a diverse set of 80 arthropod species, representing 11 orders, to establish optimal protocols for Illumina-based metabarcoding of tropical Malaise trap samples. Two primer sets which showed the highest amplification success with individual specimen polymerase chain reaction (PCR, 98%) were used for bulk PCR and Illumina MiSeq sequencing. The sequencing outputs were subjected to both manual and simple metagenomics quality control and filtering pipelines. We obtained acceptable detection rates after bulk PCR and high-throughput sequencing (80-90% of input species) but analyses were complicated by putative heteroplasmic sequences and contamination. The manual pipeline produced similar or better outputs to the simple metagenomics pipeline (1.4 compared with 0.5 expected:unexpected Operational Taxonomic Units). Our study suggests that metabarcoding is slowly becoming as cheap, fast and easy as conventional DNA barcoding, and that Malaise trap metabarcoding may soon fulfill its potential, providing a thermometer for biodiversity.


Subject(s)
Arthropods/genetics , DNA Barcoding, Taxonomic/methods , DNA Primers , Animals , Biodiversity , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , High-Throughput Nucleotide Sequencing , Metagenomics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction
3.
Trop Biomed ; 32(1): 76-83, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25801256

ABSTRACT

Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.


Subject(s)
Aedes/drug effects , Fenitrothion/pharmacology , Insecticides/pharmacology , Animals , Biological Assay , Female , Larva/drug effects , Survival Analysis , Time Factors
4.
Tropical Biomedicine ; : 76-83, 2015.
Article in English | WPRIM (Western Pacific) | ID: wpr-630413

ABSTRACT

Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 – 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality. INTRODUCTION Dengue is a serious public health disease in Malaysia since the first nationwide dengue outbreak in 1973; the most prevalent vectors for dengue are Aedes aegypti and Aedes albopictus (Lee et al., 1997). In the continued absence of specific treatment and effective vaccine against dengue virus, dengue control relies on suppressing Aedes populations and subsequent interruption of disease transmission through the use of insecticides, especially during outbreaks (Esu et al., 2010). The organophosphate fenitrothion was applied in space spraying for dengue and malaria control since 1970s (Samutrapongse & Pant, 1973; Pant

5.
Genet Mol Res ; 13(1): 920-5, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24634112

ABSTRACT

Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.


Subject(s)
Biodiversity , Chiroptera/classification , Chiroptera/genetics , DNA Barcoding, Taxonomic , Animals , Evolution, Molecular , Malaysia , Phylogeny
6.
Trop Biomed ; 28(1): 48-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21602768

ABSTRACT

Ovitrap surveillance was conducted in methodically selected areas in Bentong, Pahang, Malaysia from June 2008 till December 2009 in order to identify insular sites with stable Aedes aegypti population. Eleven sites were surveyed in Bentong district, Pahang, and one of these locations (N3º33' E101º54') was found to have an ovitrap index of Ae. aegypti and Aedes albopictus ranging from 8%-47% and 37%-78% respectively, indicating that this site could be a high-risk area for dengue outbreak. Ae. aegypti larvae were found in both indoor and outdoor ovitraps (p>0.05) while significant difference between the populations of Ae. albopictus larvae from indoors and outdoors was observed (p<0.01). Data collected in this study could provide important entomological information for designing an effective integrated vector control programme to combat Aedes mosquitoes in this area.


Subject(s)
Aedes/growth & development , Disease Vectors , Animals , Dengue/epidemiology , Dengue/transmission , Ecosystem , Humans , Malaysia , Population Density
7.
Trop Biomed ; 27(2): 185-92, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20962714

ABSTRACT

A year-long ovitrap surveillance was conducted between November 2007 and October 2008 in two insular settlements (Kampung Pulau Ketam and Kampung Sungai Lima) within the Malaysian island of Pulau Ketam. Eighty standard ovitraps were placed indoors and outdoors of randomly selected houses/locations. Results demonstrated an endemic baseline Aedes population throughout the year without weekly large fluctuations. Kampung Pulau Ketam has high Aedes aegypti and Aedes albopictus population, but only Ae. aegypti was found in Kampung Sungai Lima. Aedes aegypti showed no preference for ovitraps placed indoor versus outdoor. However, as expected, significantly more outdoor ovitraps were positive for Ae. albopictus (p<0.05). Trends in Ae. albopictus and Ae. aegypti populations mirrored each other suggesting that common factors influenced these two populations.


Subject(s)
Aedes/physiology , Aedes/virology , Dengue/transmission , Insect Vectors/physiology , Insect Vectors/virology , Animals , Housing , Humans , Malaysia , Population Density , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...