Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005353

ABSTRACT

The hypothalamus, composed of several nuclei, is essential for maintaining our body's homeostasis. The arcuate nucleus (ARC), located in the mediobasal hypothalamus, contains neuronal populations with eminent roles in energy and glucose homeostasis as well as reproduction. These neuronal populations are of great interest for translational research. To fulfill this promise, we used a robotic cell culture platform to provide a scalable and chemically defined approach for differentiating human pluripotent stem cells (hPSCs) into pro-opiomelanocortin (POMC), somatostatin (SST), tyrosine hydroxylase (TH) and gonadotropin-releasing hormone (GnRH) neuronal subpopulations with an ARC-like signature. This robust approach is reproducible across several distinct hPSC lines and exhibits a stepwise induction of key ventral diencephalon and ARC markers in transcriptomic profiling experiments. This is further corroborated by direct comparison to human fetal hypothalamus, and the enriched expression of genes implicated in obesity and type 2 diabetes (T2D). Genome-wide chromatin accessibility profiling by ATAC-seq identified accessible regulatory regions that can be utilized to predict candidate enhancers related to metabolic disorders and hypothalamic development. In depth molecular, cellular, and functional experiments unveiled the responsiveness of the hPSC-derived hypothalamic neurons to hormonal stimuli, such as insulin, neuropeptides including kisspeptin, and incretin mimetic drugs such as Exendin-4, highlighting their potential utility as physiologically relevant cellular models for disease studies. In addition, differential glucose and insulin treatments uncovered adaptability within the generated ARC neurons in the dynamic regulation of POMC and insulin receptors. In summary, the establishment of this model represents a novel, chemically defined, and scalable platform for manufacturing large numbers of hypothalamic arcuate neurons and serves as a valuable resource for modeling metabolic and reproductive disorders.

2.
Biofabrication ; 16(1)2023 12 11.
Article in English | MEDLINE | ID: mdl-37972398

ABSTRACT

Embryoid bodies (EBs) and self-organizing organoids derived from human pluripotent stem cells (hPSCs) recapitulate tissue development in a dish and hold great promise for disease modeling and drug development. However, current protocols are hampered by cellular stress and apoptosis during cell aggregation, resulting in variability and impaired cell differentiation. Here, we demonstrate that EBs and various organoid models (e.g., brain, gut, kidney) can be optimized by using the small molecule cocktail named CEPT (chroman 1, emricasan, polyamines, trans-ISRIB), a polypharmacological approach that ensures cytoprotection and cell survival. Application of CEPT for just 24 h during cell aggregation has long-lasting consequences affecting morphogenesis, gene expression, cellular differentiation, and organoid function. Various qualification methods confirmed that CEPT treatment enhanced experimental reproducibility and consistently improved EB and organoid fitness as compared to the widely used ROCK inhibitor Y-27632. Collectively, we discovered that stress-free cell aggregation and superior cell survival in the presence of CEPT are critical quality control determinants that establish a robust foundation for bioengineering complex tissue and organ models.


Subject(s)
Embryoid Bodies , Pluripotent Stem Cells , Humans , Embryoid Bodies/metabolism , Reproducibility of Results , Organoids , Cell Differentiation
3.
Nat Commun ; 14(1): 5632, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704594

ABSTRACT

With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.


Subject(s)
Analgesia , Chronic Pain , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Rats , Macaca , Receptors, Opioid , Receptors, Opioid, mu/genetics , Transgenes
4.
Stem Cell Reports ; 18(8): 1701-1720, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37451260

ABSTRACT

Human gliogenesis remains poorly understood, and derivation of astrocytes from human pluripotent stem cells (hPSCs) is inefficient and cumbersome. Here, we report controlled glial differentiation from hPSCs that bypasses neurogenesis, which otherwise precedes astrogliogenesis during brain development and in vitro differentiation. hPSCs were first differentiated into radial glial cells (RGCs) resembling resident RGCs of the fetal telencephalon, and modulation of specific cell signaling pathways resulted in direct and stepwise induction of key astroglial markers (NFIA, NFIB, SOX9, CD44, S100B, glial fibrillary acidic protein [GFAP]). Transcriptomic and genome-wide epigenetic mapping and single-cell analysis confirmed RGC-to-astrocyte differentiation, obviating neurogenesis and the gliogenic switch. Detailed molecular and cellular characterization experiments uncovered new mechanisms and markers for human RGCs and astrocytes. In summary, establishment of a glia-exclusive neural lineage progression model serves as a unique serum-free platform of manufacturing large numbers of RGCs and astrocytes for neuroscience, disease modeling (e.g., Alexander disease), and regenerative medicine.


Subject(s)
Astrocytes , Pluripotent Stem Cells , Humans , Astrocytes/metabolism , Ependymoglial Cells/metabolism , Pluripotent Stem Cells/metabolism , Neurogenesis , Cell Differentiation , Glial Fibrillary Acidic Protein/metabolism
5.
Cell Rep Methods ; 3(3): 100420, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37056373

ABSTRACT

SEQUIN is a web-based application (app) that allows fast and intuitive analysis of RNA sequencing data derived for model organisms, tissues, and single cells. Integrated app functions enable uploading datasets, quality control, gene set enrichment, data visualization, and differential gene expression analysis. We also developed the iPSC Profiler, a practical gene module scoring tool that helps measure and compare pluripotent and differentiated cell types. Benchmarking to other commercial and non-commercial products underscored several advantages of SEQUIN. Freely available to the public, SEQUIN empowers scientists using interdisciplinary methods to investigate and present transcriptome data firsthand with state-of-the-art statistical methods. Hence, SEQUIN helps democratize and increase the throughput of interrogating biological questions using next-generation sequencing data with single-cell resolution.


Subject(s)
Software , Transcriptome , RNA-Seq , Transcriptome/genetics , Sequence Analysis, RNA/methods , Gene Regulatory Networks
6.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37044067

ABSTRACT

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Subject(s)
Neurons , Pluripotent Stem Cells , Humans , Neurons/metabolism , Nociceptors , Cell Differentiation , Signal Transduction , Ganglia, Spinal/metabolism , Sensory Receptor Cells
7.
Nat Methods ; 20(1): 149-161, 2023 01.
Article in English | MEDLINE | ID: mdl-36550275

ABSTRACT

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top. In this 3D-oBRB model, a fully-polarized RPE monolayer provides barrier resistance, induces choriocapillaris fenestration, and supports the formation of Bruch's-membrane-like structure by inducing changes in gene expression in cells of the choroid. Complement activation in the 3D-oBRB triggers dry AMD phenotypes (including subRPE lipid-rich deposits called drusen and choriocapillaris degeneration), and HIF-α stabilization or STAT3 overactivation induce choriocapillaris neovascularization and type-I wet AMD phenotype. The 3D-oBRB provides a physiologically relevant model to studying RPE-choriocapillaris interactions under healthy and diseased conditions.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Endothelial Cells , Choroid/metabolism , Retina/metabolism , Macular Degeneration/metabolism
8.
Nat Protoc ; 18(1): 58-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36261632

ABSTRACT

Human pluripotent stem cells (hPSCs) are inherently sensitive cells. Single-cell dissociation and the establishment of clonal cell lines have been long-standing challenges. This inefficiency of cell cloning represents a major obstacle for the standardization and streamlining of gene editing in induced pluripotent stem cells for basic and translational research. Here we describe a chemically defined protocol for robust single-cell cloning using microfluidics-based cell sorting in combination with the CEPT small-molecule cocktail. This advanced strategy promotes the viability and cell fitness of self-renewing stem cells. The use of low-pressure microfluidic cell dispensing ensures gentle and rapid dispensing of single cells into 96- and 384-well plates, while the fast-acting CEPT cocktail minimizes cellular stress and maintains cell structure and function immediately after cell dissociation. The protocol also facilitates clone picking and produces genetically stable clonal cell lines from hPSCs in a safe and cost-efficient fashion. Depending on the proliferation rate of the clone derived from a single cell, this protocol can be completed in 7-14 d and requires experience with aseptic cell culture techniques. Altogether, the relative ease, scalability and robustness of this workflow should boost gene editing in hPSCs and leverage a wide range of applications, including cell line development (e.g., reporter and isogenic cell lines), disease modeling and applications in regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Cell Culture Techniques/methods , Cell Line , Cell Differentiation , Cloning, Molecular
9.
Dis Model Mech ; 15(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36398590

ABSTRACT

The proteosome inhibitor bortezomib has revolutionized the treatment of multiple hematologic malignancies, but in many cases, its efficacy is limited by a dose-dependent peripheral neuropathy. We show that human induced pluripotent stem cell (hiPSC)-derived motor neurons and sensory neurons provide a model system for the study of bortezomib-induced peripheral neuropathy, with promising implications for furthering the mechanistic understanding of and developing treatments for preventing axonal damage. Human neurons in tissue culture displayed distal-to-proximal neurite degeneration when exposed to bortezomib. This process coincided with disruptions in mitochondrial function and energy homeostasis, similar to those described in rodent models of bortezomib-induced neuropathy. Moreover, although the degenerative process was unaffected by inhibition of caspases, it was completely blocked by exogenous nicotinamide adenine dinucleotide (NAD+), a mediator of the SARM1-dependent axon degeneration pathway. We demonstrate that bortezomib-induced neurotoxicity in relevant human neurons proceeds through mitochondrial dysfunction and NAD+ depletion-mediated axon degeneration, raising the possibility that targeting these changes might provide effective therapeutics for the prevention of bortezomib-induced neuropathy and that modeling chemotherapy-induced neuropathy in human neurons has utility.


Subject(s)
Induced Pluripotent Stem Cells , Peripheral Nervous System Diseases , Humans , NAD , Bortezomib/pharmacology , Peripheral Nervous System Diseases/chemically induced
11.
Methods Mol Biol ; 2454: 811-827, 2022.
Article in English | MEDLINE | ID: mdl-34128205

ABSTRACT

Human pluripotent stem cells (hPSCs), such as induced pluripotent stem cells (iPSCs), hold great promise for drug discovery, toxicology studies, and regenerative medicine. Here, we describe standardized protocols and experimental procedures that combine automated cell culture for scalable production of hPSCs with quantitative high-throughput screening (qHTS) in miniaturized 384-well plates. As a proof of principle, we established dose-response assessments and determined optimal concentrations of 12 small molecule compounds that are commonly used in the stem cell field. Multi-parametric analysis of readouts from diverse assays including cell viability, mitochondrial membrane potential, plasma membrane integrity, and ATP production was used to distinguish normal biological responses from cellular stress induced by small molecule treatment. Collectively, the establishment of integrated workflows for cell manufacturing, qHTS, high-content imaging, and data analysis provides an end-to-end platform for industrial-scale projects and should leverage the drug discovery process using hPSC-derived cell types.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Culture Techniques/methods , Cell Differentiation/physiology , Drug Evaluation, Preclinical , High-Throughput Screening Assays/methods , Humans
12.
Stem Cell Reports ; 16(12): 3076-3092, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34861164

ABSTRACT

Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient- and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation and generated functional neurons, cardiomyocytes, and hepatocytes. To validate our approach, we compared robotic and manual cell culture operations and performed comprehensive molecular and cellular characterizations (e.g., single-cell transcriptomics, mass cytometry, metabolism, electrophysiology) to benchmark industrial-scale cell culture operations toward building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Robotics , Automation , Cell Lineage , Cells, Cultured , Embryoid Bodies/cytology , Hepatocytes/cytology , Hepatocytes/virology , Human Embryonic Stem Cells/cytology , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/virology , Neurons/cytology , RNA-Seq , Reference Standards , Single-Cell Analysis , Zika Virus Infection/pathology
13.
Sci Transl Med ; 13(619): eabj9837, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34757806

ABSTRACT

Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell­derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.


Subject(s)
Chronic Pain , Analgesics/therapeutic use , Chronic Pain/drug therapy , Humans , Nociceptors
14.
Nat Methods ; 18(5): 528-541, 2021 05.
Article in English | MEDLINE | ID: mdl-33941937

ABSTRACT

Human pluripotent stem cells (hPSCs) are capable of extensive self-renewal yet remain highly sensitive to environmental perturbations in vitro, posing challenges to their therapeutic use. There is an urgent need to advance strategies that ensure safe and robust long-term growth and functional differentiation of these cells. Here, we deployed high-throughput screening strategies to identify a small-molecule cocktail that improves viability of hPSCs and their differentiated progeny. The combination of chroman 1, emricasan, polyamines, and trans-ISRIB (CEPT) enhanced cell survival of genetically stable hPSCs by simultaneously blocking several stress mechanisms that otherwise compromise cell structure and function. CEPT provided strong improvements for several key applications in stem-cell research, including routine cell passaging, cryopreservation of pluripotent and differentiated cells, embryoid body (EB) and organoid formation, single-cell cloning, and genome editing. Thus, CEPT represents a unique poly-pharmacological strategy for comprehensive cytoprotection, providing a rationale for efficient and safe utilization of hPSCs.


Subject(s)
Cell Differentiation/drug effects , Cell Survival/drug effects , Cryoprotective Agents/pharmacology , Pluripotent Stem Cells/drug effects , Polypharmacology , Cell Culture Techniques , Cryopreservation/methods , Cryoprotective Agents/chemistry , Gene Expression Regulation/drug effects , High-Throughput Screening Assays , Humans , Pluripotent Stem Cells/physiology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
15.
bioRxiv ; 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32793899

ABSTRACT

Efficient translation of human induced pluripotent stem cells (hiPSCs) depends on implementing scalable cell manufacturing strategies that ensure optimal self-renewal and functional differentiation. Currently, manual culture of hiPSCs is highly variable and labor-intensive posing significant challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions. This streamlined approach allowed rapid and standardized manufacturing of billions of hiPSCs that can be produced in parallel from up to 90 different patient-and disease-specific cell lines. Moreover, we established automated multi-lineage differentiation to generate primary embryonic germ layers and more mature phenotypes such as neurons, cardiomyocytes, and hepatocytes. To validate our approach, we carefully compared robotic and manual cell culture and performed molecular and functional cell characterizations (e.g. bulk culture and single-cell transcriptomics, mass cytometry, metabolism, electrophysiology, Zika virus experiments) in order to benchmark industrial-scale cell culture operations towards building an integrated platform for efficient cell manufacturing for disease modeling, drug screening, and cell therapy. Combining stem cell-based models and non-stop robotic cell culture may become a powerful strategy to increase scientific rigor and productivity, which are particularly important during public health emergencies (e.g. opioid crisis, COVID-19 pandemic).

17.
ACS Chem Biol ; 14(3): 497-505, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30699290

ABSTRACT

Nearly one-third of the encoded proteome is comprised of secretory proteins that enable communication between cells and organ systems, playing a ubiquitous role in human health and disease. High-throughput detection of secreted proteins would enhance efforts to identify therapies for secretion-related diseases. Using the Z mutant of alpha-1 antitrypsin as a human secretory model, we have developed 1536-well high-throughput screening assays that utilize acoustic droplet ejection to transfer nanoliter volumes of sample for protein quantification. Among them, the acoustic reverse phase protein array (acoustic RPPA) is a multiplexable, low-cost immunodetection technology for native, endogenously secreted proteins from physiologically relevant model systems like stem cells that is compatible with plate-based instrumentation. Parallel assay profiling with the LOPAC1280 chemical library validated performance and orthogonality between a secreted bioluminescent reporter and acoustic RPPA method by consistently identifying secretory modulators with comparable concentration response relationships. Here, we introduce a robust, multiplexed drug discovery platform coupling extracellular protein quantification by acoustic RPPA with intracellular and cytotoxicity analyses from single wells, demonstrating proof-of-principle applications for human induced pluripotent stem cell-derived hepatocytes.


Subject(s)
Antibodies/analysis , Biomedical Technology/methods , High-Throughput Screening Assays/methods , Acoustics , Cell Line , Drug Discovery/methods , Hepatocytes/chemistry , Humans , Induced Pluripotent Stem Cells/chemistry , Protein Array Analysis/methods , Small Molecule Libraries/chemistry
18.
Methods Mol Biol ; 1919: 59-72, 2019.
Article in English | MEDLINE | ID: mdl-30656621

ABSTRACT

Human pluripotent stem cells (hPSCs) are characterized by their ability to self-renew and differentiate into any cell type of the human body. To fully utilize the potential of hPSCs for translational research and clinical applications, it is critical to develop rigorous cell differentiation protocols under feeder-free conditions that are efficient, reproducible, and scalable for high-throughput projects. Focusing on neural conversion of hPSCs, here we describe robust small molecule-based procedures that generate neural stem cells (NSCs) in less than a week under chemically defined conditions. These protocols can be used to dissect the mechanisms of neural lineage entry and to further develop systematic protocols that produce the cellular diversity of the central nervous system at industrial scale.


Subject(s)
Cell Differentiation/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Animals , Biomarkers , Cell Culture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Humans , Immunohistochemistry , Immunophenotyping , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Neural Stem Cells/metabolism , Pluripotent Stem Cells/metabolism
19.
Adv Exp Med Biol ; 1031: 371-386, 2017.
Article in English | MEDLINE | ID: mdl-29214583

ABSTRACT

Rare diseases are highly diverse and complex regarding molecular underpinning and clinical manifestation and afflict millions of patients worldwide. The lack of appropriate model systems with face and construct validity and the limited availability of live tissues and cells from patients has largely hampered the understanding of underlying disease mechanisms. As a consequence, there are no adequate treatment options available for the vast majority of rare diseases. Over the last decade, remarkable progress in pluripotent and adult stem cell biology and the advent of powerful genomic technologies opened up exciting new avenues for the investigation, diagnosis, and personalized therapy of intractable human diseases. Utilizing the entire range of available stem cell types will continue to cross-fertilize different research areas and leverage the investigation of rare diseases based on evidence-based medicine. Standardized cell engineering and manufacturing from inexhaustible stem cell sources should lay the foundation for next-generation drug discovery and cell therapies that are broadly applicable in regenerative medicine. In this chapter we discuss how patient- and disease-specific iPS cells as well as adult stem cells are changing the pace of biomedical research and the translational landscape.


Subject(s)
Adult Stem Cells/transplantation , Pluripotent Stem Cells/transplantation , Rare Diseases/surgery , Regenerative Medicine/methods , Research Design , Stem Cell Transplantation/methods , Clinical Trials as Topic/methods , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Treatment Outcome
20.
Drug Target Rev ; 3(2): 34-38, 2016.
Article in English | MEDLINE | ID: mdl-27774310

ABSTRACT

Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed. Here we review the current state and reflect on the issues that the stem cell and translational communities are facing in bringing iPSCs closer to clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...