Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur Heart J ; 36(48): 3426-34, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26294790

ABSTRACT

AIMS: Growth differentiation factor 11 and/or its homologue growth differentiation factor 8 (GDF11/8) reverses age-related cardiac hypertrophy and vascular ageing in mice. We investigated whether GDF11/8 associates with cardiovascular outcomes, left ventricular hypertrophy (LVH), or age in humans. METHODS AND RESULTS: We measured plasma GDF11/8 levels in 928 participants with stable ischaemic heart disease in the Heart and Soul study. We adjudicated heart failure hospitalization, stroke, myocardial infarction, death, and their composite endpoint. Left ventricular hypertrophy was evaluated by echocardiography. We used multivariable Cox proportional hazards models to compare rates of cardiovascular events and death across GDF11/8 quartiles and logistic regression models to evaluate the association between GDF11/8 and LVH. Four hundred and fifty participants (48.5%) experienced a cardiovascular event or death during 8.9 years of follow-up. The adjusted risk of the composite endpoint was lower in the highest compared with the lowest GDF11/8 quartile [hazard ratio (HR), 0.45; 95% confidence interval (CI), 0.33-0.60; P < 0.001]. We replicated this relationship of GDF11/8 to adverse events in 971 participants in the HUNT3 cohort (adjusted HR, 0.34; 95% CI, 0.23-0.51; P < 0.001). Left ventricular hypertrophy was present in 368 participants (39.7%) at baseline. Participants in the highest quartile of GDF11/8 were less likely to have LVH than those in the lowest quartile (adjusted OR, 0.55; 95% CI, 0.35-0.86; P = 0.009). GDF11/8 levels were lower in older individuals (P < 0.001). CONCLUSION: In patients with stable ischaemic heart disease, higher GDF11/8 levels are associated with lower risk of cardiovascular events and death. Our findings suggest that GDF11/8 has similar cardioprotective properties in humans to those demonstrated in mice.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factor 9/metabolism , Growth Differentiation Factors/metabolism , Hypertrophy, Left Ventricular/mortality , Myocardial Ischemia/mortality , Age Factors , Aged , Coronary Disease/blood , Coronary Disease/mortality , Female , Heart Failure/blood , Heart Failure/mortality , Humans , Hypertrophy, Left Ventricular/blood , Male , Myocardial Ischemia/blood , Prognosis , Prospective Studies , Risk Factors , Stroke/blood , Stroke/mortality
2.
Cell ; 153(4): 828-39, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663781

ABSTRACT

The most common form of heart failure occurs with normal systolic function and often involves cardiac hypertrophy in the elderly. To clarify the biological mechanisms that drive cardiac hypertrophy in aging, we tested the influence of circulating factors using heterochronic parabiosis, a surgical technique in which joining of animals of different ages leads to a shared circulation. After 4 weeks of exposure to the circulation of young mice, cardiac hypertrophy in old mice dramatically regressed, accompanied by reduced cardiomyocyte size and molecular remodeling. Reversal of age-related hypertrophy was not attributable to hemodynamic or behavioral effects of parabiosis, implicating a blood-borne factor. Using modified aptamer-based proteomics, we identified the TGF-ß superfamily member GDF11 as a circulating factor in young mice that declines with age. Treatment of old mice to restore GDF11 to youthful levels recapitulated the effects of parabiosis and reversed age-related hypertrophy, revealing a therapeutic opportunity for cardiac aging.


Subject(s)
Aging , Bone Morphogenetic Proteins/metabolism , Cardiomegaly/metabolism , Growth Differentiation Factors/metabolism , Myocytes, Cardiac/metabolism , Parabiosis , Animals , Blood Pressure , Female , Forkhead Transcription Factors/metabolism , Humans , Hypertrophy, Left Ventricular/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...