Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Respir Res ; 23(1): 378, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572876

ABSTRACT

BACKGROUND: To date, reliable biomarkers for asthma have not been identified. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate post-transcriptional gene expression, and they are involved in various diseases, including asthma. MiRNAs may serve as ideal biomarkers due to their ability to regulate multiple pathways. This study aims to identify miRNA biomarker signatures for asthma. METHODS: We used the house dust mite (HDM) mouse model of allergic inflammation. Mice were phenotyped by assessing lung function, allergic response, airway inflammation, and remodeling. The miRNA signature profiles in serum and lung tissue were determined by small RNA sequencing, and data were analyzed using Qiagen CLC Genomics Workbench. To identify relevant gene targets, we performed mRNA sequencing, followed by miRNA-targets analysis. These miRNAs and targets were subject to subsequent pathway and functional analyses. RESULTS: Mice exposed to HDM developed phenotypic features of allergic asthma. miRNA sequencing analysis showed that 213 miRNAs were substantially dysregulated (FDR p-value < 0.05 and fold change expression > + 1.5 and < - 1.5) in the lung of HDM mice relative to the control mice. In contrast, only one miRNA (miR-146b-5p) was significantly increased in serum. Target analysis of lung dysregulated miRNAs revealed a total of 131 miRNAs targeting 211 mRNAs. Pathway analysis showed T helper 2/1 (Th2/Th1) as the top significantly activated signaling pathway associated with the dysregulated miRNAs. The top enriched diseases were inflammatory response and disease, which included asthma. Asthma network analysis indicated that 113 of 131 miRNAs were directly associated with asthma pathogenesis. CONCLUSIONS: These findings suggest that most dysregulated miRNAs in the HDM model were associated with asthma pathogenesis via Th2 signaling. We identified a panel of 30 miRNAs as potential biomarker candidates for asthma.


Subject(s)
Asthma , MicroRNAs , Animals , Mice , MicroRNAs/genetics , Gene Regulatory Networks , Asthma/diagnosis , Asthma/genetics , Asthma/metabolism , Biomarkers , Pyroglyphidae , Inflammation
2.
FASEB Bioadv ; 4(11): 724-740, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36349295

ABSTRACT

Asthma is a chronic inflammatory disorder of the lower airways characterized by modulation of airway smooth muscle (ASM) function. Infiltration of smooth muscle by inflammatory mediators is partially regulated by transmembrane integrins and the major smooth muscle laminin receptor α7ß1 integrin plays a critical role in the maintenance of ASM phenotype. The goal of the current study was to investigate the role of α7 integrin in asthma using smooth muscle-specific α7 integrin transgenic mice (TgSM-Itgα7) using both acute and chronic OVA sensitization and challenge protocols that mimic mild to severe asthmatic phenotypes. Transgenic over-expression of the α7 integrin in smooth muscle resulted in a significant decrease in airway resistance relative to controls, reduced the total number of inflammatory cells and substantially inhibited the production of crucial Th2 and Th17 cytokines in airways. This was accompanied by decreased secretion of various inflammatory chemokines such as eotaxin/CCL11, KC/CXCL3, MCP-1/CCL2, and MIP-1ß/CCL4. Additionally, α7 integrin overexpression significantly decreased ERK1/2 phosphorylation in the lungs of TgSM-Itgα7 mice and affected proliferative, contractile, and inflammatory downstream effectors of ERK1/2 that drive smooth muscle phenotype in the lung. Taken together, these results support the hypothesis that enhanced expression of α7 integrin in vivo inhibits allergic inflammation and airway resistance. Moreover, we identify ERK1/2 as a potential target by which α7 integrin signals to regulate airway inflammation. We conclude that identification of therapeutics targeting an increase in smooth muscle α7 integrin expression could serve as a potential novel treatment for asthma.

3.
Am J Physiol Cell Physiol ; 317(6): C1093-C1106, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31461344

ABSTRACT

This study explored the mechanism by which Ca2+-activated Cl- channels (CaCCs) encoded by the Tmem16a gene are regulated by calmodulin-dependent protein kinase II (CaMKII) and protein phosphatases 1 (PP1) and 2A (PP2A). Ca2+-activated Cl- currents (IClCa) were recorded from HEK-293 cells expressing mouse TMEM16A. IClCa were evoked using a pipette solution in which free Ca2+ concentration was clamped to 500 nM, in the presence (5 mM) or absence of ATP. With 5 mM ATP, IClCa decayed to <50% of the initial current magnitude within 10 min after seal rupture. IClCa rundown seen with ATP-containing pipette solution was greatly diminished by omitting ATP. IClCa recorded after 20 min of cell dialysis with 0 ATP were more than twofold larger than those recorded with 5 mM ATP. Intracellular application of autocamtide-2-related inhibitory peptide (5 µM) or KN-93 (10 µM), two specific CaMKII inhibitors, produced a similar attenuation of TMEM16A rundown. In contrast, internal application of okadaic acid (30 nM) or cantharidin (100 nM), two nonselective PP1 and PP2A blockers, promoted the rundown of TMEM16A in cells dialyzed with 0 ATP. Mutating serine 528 of TMEM16A to an alanine led to a similar inhibition of TMEM16A rundown to that exerted by either one of the two CaMKII inhibitors tested, which was not observed for three putative CaMKII consensus sites for phosphorylation (T273, T622, and S730). Our results suggest that TMEM16A-mediated CaCCs are regulated by CaMKII and PP1/PP2A. Our data also suggest that serine 528 of TMEM16A is an important contributor to the regulation of IClCa by CaMKII.


Subject(s)
Anoctamin-1/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gene Expression Regulation , Neoplasm Proteins/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 2/genetics , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Animals , Anoctamin-1/metabolism , Benzylamines/pharmacology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cantharidin/pharmacology , Chlorides/metabolism , Evoked Potentials/drug effects , Evoked Potentials/physiology , HEK293 Cells , Humans , Ion Transport/drug effects , Mice , Neoplasm Proteins/metabolism , Okadaic Acid/pharmacology , Patch-Clamp Techniques , Peptides/pharmacology , Phosphorylation/drug effects , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Sulfonamides/pharmacology
4.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L843-L868, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30810068

ABSTRACT

Severe asthma develops as a result of heightened, persistent symptoms that generally coincide with pronounced neutrophilic airway inflammation. In individuals with severe asthma, symptoms are poorly controlled by high-dose inhaled glucocorticoids and often lead to elevated morbidity and mortality rates that underscore the necessity for novel drug target identification that overcomes limitations in disease management. Many incidences of severe asthma are mechanistically associated with T helper 17 (TH17) cell-derived cytokines and immune factors that mediate neutrophilic influx to the airways. TH17-secreted interleukin-17A (IL-17A) is an independent risk factor for severe asthma that impacts airway smooth muscle (ASM) remodeling. TH17-derived cytokines and diverse immune mediators further interact with structural cells of the airway to induce pathophysiological processes that impact ASM functionality. Transforming growth factor-ß1 (TGF-ß1) is a pivotal mediator involved in airway remodeling that correlates with enhanced TH17 activity in individuals with severe asthma and is essential to TH17 differentiation and IL-17A production. IL-17A can also reciprocally enhance activation of TGF-ß1 signaling pathways, whereas combined TH1/TH17 or TH2/TH17 immune responses may additively impact asthma severity. This review seeks to provide a comprehensive summary of cytokine-driven T cell fate determination and TH17-mediated airway inflammation. It will further review the evidence demonstrating the extent to which IL-17A interacts with various immune factors, specifically TGF-ß1, to contribute to ASM remodeling and altered function in TH17-driven endotypes of severe asthma.


Subject(s)
Airway Remodeling/immunology , Asthma/immunology , Interleukin-17/immunology , Lung/immunology , Muscle, Smooth/immunology , Th17 Cells/immunology , Transforming Growth Factor beta1/immunology , Animals , Asthma/pathology , Humans , Lung/pathology , Muscle, Smooth/pathology , Th17 Cells/pathology
5.
Pulm Pharmacol Ther ; 53: 12-19, 2018 12.
Article in English | MEDLINE | ID: mdl-30205157

ABSTRACT

BACKGROUND: Airway smooth muscle (ASM) contributes to local inflammation and plays an immunomodulatory role in airway diseases. This is partially regulated by p38 mitogen-activated protein kinase (MAPK), which further activates two closely related isoforms of the MAPK-activated protein kinases (MKs), MK2 and MK3. The MKs have similar substrate specificities but less is known about differences in their functional responses. This study was undertaken to identify differential downstream inflammatory targets of MK2 and MK3 signaling and assess cross-talk between the MAPK pathway and NF-κB signaling relevant to ASM function. METHODS: Wild-type and kinase-deficient MK2 (MK2WT, MK2KR) and MK3 (MK3WT, MK33A) were expressed in human ASM cells stimulated for 20 h with 10 ng/ml each interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interferon (IFN)-γ. Inflammatory mediator secretion was assessed by Luminex assays and ELISA. Signaling pathway activation was monitored by Western blotting. RESULTS: Expression of these MKs and stimulation with 10 ng/ml IL-1ß, TNFα and IFNγ for 20 h did not affect secretion of multiple cytokines including IL-4, IL-5, IL-13 and monocyte chemotactic protein (MCP)-1/CCL2 but did differentially affect the secretion of regulated upon activation, normal T cell expressed and secreted (RANTES)/CCL5, IL-6 and granulocyte macrophage-colony stimulating factor (GM-CSF). RANTES/CCL5 secretion was decreased by MK2WT or MK3WT and stimulated by inhibition of MK2 or MK3 activity with expression of the kinase-deficient enzymes MK2KR or MK33A. IL-6 and GM-CSF secretion was decreased by inhibition of MK2 activity with MK2KR and while MK3WT had no effect, the kinase-deficient MK33A further decreased secretion of these mediators. Cross-talk of the MKs with other signaling pathways was investigated by examining NF-κB activation, which was inhibited by expression of MK3 but not affected by MK2. CONCLUSIONS: These results suggest an inhibitory role for MK2 and MK3 activity in RANTES/CCL5 secretion and cross-talk of MK3 with NF-κB to regulate IL-6 and GM-CSF. These findings differentiate MK2 and MK3 function in ASM cells and provide insight that may enable selective targeting of MKs in ASM to modulate local inflammation in airway disease.


Subject(s)
Bronchi/cytology , Intracellular Signaling Peptides and Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Protein Serine-Threonine Kinases/genetics , Blotting, Western , Cells, Cultured , Chemokine CCL5/metabolism , Chemokines/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-6/metabolism , MAP Kinase Signaling System/physiology , Myocytes, Smooth Muscle/pathology , NF-kappa B/metabolism , Signal Transduction
6.
BMC Pharmacol Toxicol ; 18(1): 47, 2017 06 17.
Article in English | MEDLINE | ID: mdl-28623958

ABSTRACT

BACKGROUND: The COP9 signalosome (CSN) is a conserved protein complex composed of 8 subunits designated CSN1-CSN8. CSN3 represents the third subunit of the CSN and maintains the integrity of the complex. CSN3 binds to the striated muscle-specific ß1D integrin tail, and its subcellular localization is altered in differentiated skeletal muscle cells. However, the role of CSN3 in skeletal muscle differentiation is unknown. The main goal of this study was to identify whether CSN3 participates in myoblast differentiation and the signalling mechanisms involved using C2C12 cells as a skeletal muscle cell model. METHODS: Small-hairpin (shRNA) was used to knockdown CSN3 in C2C12 cells. Differentiation was evaluated by immunostaining and confocal microscopy. Markers of differentiation, NF-κB signaling and CSN subunits expression, were assessed by immunoblotting and/or immunostaining. Cell proliferation was analysed by cell counting, flow cytometry and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by one or two-way analysis of variance (ANOVA) followed by post-hoc testing. RESULTS: Transduction of C2C12 cells with two distinct CSN3 shRNAs led to the production of two cells lines expressing 7% of CSN3 protein (shCSN3-Low) and 43% of CSN3 protein (CSN3-Med) compared to controls. Knockdown of CSN3 was accompanied by destabilization of several CSN subunits and increased nuclear NF-κB localization. shCSN3-Med cells expressed less myogenin and formed shorter and thinner myotubes. In contrast, the shCSN3-Low cells expressed higher levels of myogenin prior and during the differentiation and remained mononucleated throughout the differentiation period. Both CSN3 knockdown cell lines failed to express sarcomeric myosin heavy chain (MHC) protein during differentiation. The fusion index was significantly higher in control cells than in shCSN3-Med cells, whereas shCSN3-Low cells showed no cell fusion. Interestingly, CSN3 knockdown cells exhibited a significantly slower growth rate relative to the control cells. Cell cycle analysis revealed that CSN3 knockdowns delayed in S phase and had increased levels of nuclear p21/Cip1 and p27/Kip1. CONCLUSIONS: This study clarifies the first step toward unrevealing the CSN3/CSN-mediated pathways that controls C2C12 differentiation and proliferation. Further in vivo characterization of CSN/CSN3 may lead to the discovery of novel therapeutic target of skeletal muscle diseases such as muscular dystrophies.


Subject(s)
COP9 Signalosome Complex/physiology , Myoblasts/cytology , Animals , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Cell Cycle , Cell Differentiation , Cell Line , Cell Proliferation , Mice , Muscle, Skeletal/cytology , Myoblasts/metabolism , NF-kappa B/metabolism , RNA, Small Interfering/genetics , Signal Transduction
7.
Pulm Circ ; 5(2): 244-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26064450

ABSTRACT

Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.

8.
Pharmacol Ther ; 147: 91-110, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25448041

ABSTRACT

In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.


Subject(s)
Drug Delivery Systems/trends , Epigenesis, Genetic/genetics , Gene Targeting/trends , Lung Diseases/genetics , Lung Diseases/therapy , Animals , Bronchodilator Agents/administration & dosage , DNA Methylation/drug effects , DNA Methylation/genetics , Drug Delivery Systems/methods , Epigenesis, Genetic/drug effects , Gene Targeting/methods , Humans
9.
PLoS One ; 9(4): e95835, 2014.
Article in English | MEDLINE | ID: mdl-24752595

ABSTRACT

Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.


Subject(s)
Cyclic AMP/metabolism , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Biosensing Techniques , Cell Line , Cholesterol/chemistry , Humans , Signal Transduction
10.
Am J Physiol Cell Physiol ; 305(6): C632-42, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23804201

ABSTRACT

The mechanisms governing maintenance of quiescence during pregnancy remain largely unknown. The current study characterizes a stretch-activated, tetraethylammonium-insensitive K(+) current in smooth muscle cells isolated from pregnant human myometrium. This study hypothesizes that these K(+) currents can be attributed to TREK-1 and that upregulation of this channel during pregnancy assists with the maintenance of a negative cell membrane potential, conceivably contributing to uterine quiescence until full term. The results of this study demonstrate that, in pregnant human myometrial cells, outward currents at 80 mV increased from 4.8 ± 1.5 to 19.4 ± 7.5 pA/pF and from 3.0 ± 0.8 to 11.8 ± 2.7 pA/pF with application of arachidonic acid (AA) and NaHCO3, respectively, causing intracellular acidification. Similarly, outward currents were inhibited following application of 10 µM fluphenazine by 51.2 ± 9.8% after activation by AA and by 73.9 ± 4.2% after activation by NaHCO3. In human embryonic kidney (HEK-293) cells stably expressing TREK-1, outward currents at 80 mV increased from 91.0 ± 23.8 to 247.5 ± 73.3 pA/pF and from 34.8 ± 8.9 to 218.6 ± 45.0 pA/pF with application of AA and NaHCO3, respectively. Correspondingly, outward currents were inhibited 89.5 ± 2.3% by 10 µM fluphenazine following activation by AA and by 91.6 ± 3.4% following activation by NaHCO3. Moreover, currents in human myometrial cells were activated by stretch and were reduced by transfection with small interfering RNA or extracellular acidification. Understanding gestational regulation of expression and gating of TREK-1 channels could be important in determining appropriate maintenance of uterine quiescence during pregnancy.


Subject(s)
Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Adult , Cell Line , Female , HEK293 Cells , Humans , Membrane Potentials/physiology , Muscle Cells/metabolism , Myocytes, Smooth Muscle/cytology , Myometrium/cytology , Potassium/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Tandem Pore Domain/genetics , Pregnancy , Tetraethylammonium/metabolism , Up-Regulation , Young Adult
11.
Reprod Sci ; 20(7): 804-12, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23298868

ABSTRACT

Focal adhesions are integrin-rich microdomains that structurally link the cytoskeleton to the extracellular matrix and transmit mechanical signals. In the pregnant uterus, increases in integrin expression and activation are thought to be critical for the formation of the mechanical syncytium required for labor. The aim of this study was to determine which integrins are upregulated and localized to focal adhesions in pregnant human myometrium. We used quantitative polymerase chain reaction, Western blotting, and confocal microscopy to determine the expression levels and colocalization with focal adhesion proteins. We observed increases in several integrin transcripts in pregnant myometrium. At the protein level, integrins such as α5-integrin (ITGA5), ITGA7, ITGAV, and ITGB3 were significantly increased during pregnancy. The integrins ITGA3, ITGA5, ITGA7, and ITGB1 colocalized with focal adhesion proteins in term human myometrium. These data suggest that integrins α3ß1, α5ß1, and α7ß1 are the most likely candidates to transmit mechanical signals from the extracellular matrix through focal adhesions in pregnant human myometrium.


Subject(s)
Focal Adhesions/metabolism , Integrin alpha Chains/biosynthesis , Integrin beta Chains/biosynthesis , Myometrium/metabolism , Pregnancy/metabolism , Up-Regulation/physiology , Adolescent , Adult , Female , Humans , Middle Aged , Young Adult
12.
Pulm Pharmacol Ther ; 26(1): 75-85, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22800879

ABSTRACT

Regulation of phenotypic plasticity in smooth muscle requires an understanding of the mechanisms regulating phenotype-specific genes and the processes dysregulated during pathogenesis. Decades of study in airway smooth muscle has provided extensive knowledge of the gene expression patterns and signaling pathways necessary to maintain and alter smooth muscle cell phenotype. With this solid foundation, the importance and complexity of inheritable epigenetic modifications and mechanisms silencing gene expression have now emerged as fundamental components regulating aspects of inflammation, proliferation and remodeling.


Subject(s)
Epigenesis, Genetic , MicroRNAs/metabolism , Myocytes, Smooth Muscle/metabolism , Airway Remodeling/genetics , Animals , Cell Proliferation , Gene Expression Regulation , Gene Silencing , Humans , Inflammation/genetics , Inflammation/pathology , Phenotype , Signal Transduction
13.
Am J Physiol Cell Physiol ; 303(11): C1156-72, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23034388

ABSTRACT

Previous studies in pulmonary artery smooth muscle cells (PASMCs) showed that acute hypoxia activates capacitative Ca(2+) entry (CCE) but the molecular candidate(s) mediating CCE caused by acute hypoxia remain unclear. The present study aimed to determine if transient receptor potential canonical 1 (TRPC1) and Orai1 interact with stromal interacting molecule 1 (STIM1) and mediate CCE caused by acute hypoxia in mouse PASMCs. In primary cultured PASMCs loaded with fura-2, acute hypoxia caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)). The transient but not sustained rise in [Ca(2+)](i) was partially inhibited by nifedipine. Acute hypoxia also increased the rate of Mn(2+) quench of fura-2 fluorescence that was inhibited by SKF 96365, Ni(2+), La(3+), and Gd(3+), exhibiting pharmacological properties characteristic of CCE. The nifedipine-insensitive rise in [Ca(2+)](i) and the increase in Mn(2+) quench rate were both inhibited in cells treated with TRPC1 antibody or TRPC1 small interfering (si)RNA, in STIM1 siRNA-transfected cells and in Orai1 siRNA-transfected cells. Moreover, overexpression of STIM1 resulted in a marked increase in [Ca(2+)](i) and Mn(2+) quench rate caused by acute hypoxia, and they were reduced in cells treated with TRPC1 antibody and in cells transfected with Orai1 siRNA. Furthermore, TRPC1 and Orai1 coimmunoprecipitated with STIM1 and the precipitation levels of TRPC1 and Orai1 were increased in cells exposed to acute hypoxia. Immunostaining showed colocalizations of TRPC1-STIM1 and Orai1-STIM1, and the colocalizations of these proteins were more apparent in acute hypoxia. These data provide direct evidence that TRPC1 and Orai1 channels mediate CCE through activation of STIM1 in acute hypoxic mouse PASMCs.


Subject(s)
Calcium Channels/physiology , Calcium/physiology , Membrane Glycoproteins/physiology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/physiopathology , TRPC Cation Channels/physiology , Animals , Antibodies, Neutralizing/pharmacology , Calcium/analysis , Calcium Channel Blockers/pharmacology , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cells, Cultured , Gadolinium/pharmacology , Gene Silencing , Imidazoles/pharmacology , Lanthanum/pharmacology , Male , Manganese/chemistry , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Nickel/pharmacology , Nifedipine/pharmacology , ORAI1 Protein , Pulmonary Artery/drug effects , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , TRPC Cation Channels/immunology
14.
Am J Physiol Cell Physiol ; 303(12): C1229-43, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23034390

ABSTRACT

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 µM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 µM, with or without 10 µM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 µM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.


Subject(s)
Chloride Channels/biosynthesis , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/physiopathology , Animals , Anoctamin-1 , Calcium Channel Blockers/pharmacology , Chloride Channel Agonists , Chloride Channels/antagonists & inhibitors , Chloride Channels/physiology , Cyclooxygenase Inhibitors/pharmacology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/drug therapy , Indomethacin/pharmacology , Male , Monocrotaline/toxicity , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Nifedipine/pharmacology , Niflumic Acid/pharmacology , Patch-Clamp Techniques , Pulmonary Artery/drug effects , Pulmonary Artery/physiopathology , Pyrimidines/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology , Thiazoles/pharmacology
15.
Biol Reprod ; 87(4): 96, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22811574

ABSTRACT

Spontaneous preterm labor (PTL) is a uniquely human problem that results in preterm delivery of an underdeveloped fetus. The underlying cause remains elusive. The cost to societies in human suffering and treasure is enormous. The stretch-activated two pore potassium channel TREK-1 is up-regulated during gestation to term such that it may maintain uterine quiescence by hyperpolarizing the smooth muscle cell membrane. We have hypothesized that the human TREK-1 channel is involved in myometrial relaxation during pregnancy and that splice variants of the TREK-1 channel expressed in preterm myometrium are associated with preterm delivery by interaction with full-length TREK-1. We detected three wild-type human TREK-1 transcript isoforms in nonpregnant and pregnant human myometrium. Using RT-PCR, we identified five unique TREK-1 splice variants in myometrium from women in PTL. These myometrial TREK-1 variants lack either the pore or the transmembrane domains or both. In transiently transfected HEK293T cells, wild-type TREK-1 was predominantly expressed at the plasma membrane. However, individual splice variants were expressed uniformly throughout the cell. Wild-type TREK-1 was localized at the plasma membrane and cytoplasm close to the plasma membrane when coexpressed with each splice variant. Co-immunoprecipitation of FLAG epitope-tagged TREK-1 and six-His epitope-tagged splice variants using Ni bead columns successfully pulled down wild-type TREK-1. These results suggest that each of four TREK-1 splice variants interacts with full-length wild-type TREK-1 and that in vivo, such interactions may contribute to a PTL phenotype.


Subject(s)
Obstetric Labor, Premature/genetics , Potassium Channels, Tandem Pore Domain/genetics , Adolescent , Adult , Amino Acid Sequence , Base Sequence , Female , Genetic Association Studies , HEK293 Cells , Humans , Middle Aged , Molecular Sequence Data , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/pathology , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/physiology , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , Sequence Homology, Amino Acid , Transfection , Young Adult
16.
Cell Commun Signal ; 9(1): 14, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21599982

ABSTRACT

The p38 and extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) participate in cytokine-stimulated inflammatory gene expression in airway smooth muscle cells. The following study was undertaken to determine whether Src tyrosine kinases are signaling intermediaries upstream of cytokine-stimulated MAPK activation and gene expression. Treating human airway myocytes with interleukin (IL)-1ß, tumor necrosis factor (TNF) α and interferon (IFN) γ caused a rapid 1.8-fold increase in Src family tyrosine kinase activity within 1 minute that remained 2.3 to 2.7 fold above basal conditions for 15 minutes. This activity was blocked by addition of 30 µM PP1, a pyrimidine inhibitor specific for Src family tyrosine kinases, in immune-complex assays to confirm that this stimulus activates Src tyrosine kinase. Addition of PP1 also blocked cytokine-stimulated expression of IL-1ß, IL-6 and IL-8, while decreasing phosphorylation of ERK, but not p38 MAPK. Since this inflammatory stimulus may activate additional inflammatory signaling pathways downstream of Src, we tested the effects of PP1 on phosphorylation of signal transducers and activators of transcription (STAT). PP1 had no effect on cytokine-stimulated STAT 1 or STAT 3 phosphorylation. These results demonstrate that Src tyrosine kinases participate in the regulation of IL-1ß, IL-6 and IL-8 expression and that these effects of Src are mediated through activation of ERK MAPK and not p38 MAPK or STAT1/STAT3 phosphorylation.

17.
Am J Physiol Lung Cell Mol Physiol ; 300(4): L633-41, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21239533

ABSTRACT

An inappropriate balance between T-helper (Th)1 and Th2 cytokine production underlies inflammatory changes that result in airway disease. Expression of the T-box transcription factor T-bet regulates differentiation of Th cells and production of Th1 cytokines, particularly IFNγ. T-bet-deficient mice develop airway hyperreactivity, undergo airway remodeling, and exhibit defects in IFNγ production while overproducing Th2 cytokines. T-bet is also reduced in the airways of asthmatic patients, suggesting loss of T-bet expression or activity promotes development of inflammatory airway disease. We present novel data demonstrating T-bet expression is induced in human airway smooth muscle cells (ASMC) by IFNγ. This IFNγ-stimulated expression of T-bet is dependent on signaling through JAK2 and signal transducers and activators of transcription 1 (STAT1) and activates T-bet-dependent DNA binding activity. Expression of T-bet stimulates IFNγ-stimulated IFNγ expression, secretion, and promoter activity, while inhibiting IFNγ-stimulated release of chemokines including monocyte chemoattractant protein (MCP)-1/CCL2, regulated on activation normal T-expressed and secreted (RANTES)/CCL5, and eotaxin/CCL11. This is accompanied by changes in expression of the chemokine receptors CCR3 and IL12Rß2 and TNFα. T-bet expression also reduces chemotactic migration of ASMC in response to serum and PDGF, which contributes to airway hyperplasia. These results are the first to identify T-bet expression and activity in a structural cell of the lung and may provide new insights into therapeutic targets for inflammatory airway disease.


Subject(s)
Cell Movement/drug effects , Chemokines/metabolism , Interferon-gamma/pharmacology , Lung/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , T-Box Domain Proteins/metabolism , Animals , Chemotaxis/drug effects , DNA/metabolism , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Interferon-gamma/biosynthesis , Janus Kinases/metabolism , Mice , Myocytes, Smooth Muscle/drug effects , Protein Binding/drug effects , RNA, Small Interfering/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , T-Box Domain Proteins/genetics
18.
PLoS One ; 5(8): e12372, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20811500

ABSTRACT

BACKGROUND: We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P), TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor. METHODOLOGY: We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium. We employed both molecular biological and functional studies of K2P channels in myometrial samples taken from women undergoing cesarean delivery of a fetus. PRINCIPAL FINDINGS: TREK-1, but not TREK-2, channels are expressed in human myometrium and significantly up-regulated during pregnancy. Down-regulation of TREK-1 message was seen by Q-PCR in laboring tissues consistent with a role for TREK-1 in maintaining uterine quiescence prior to labor. The TRAAK channel was unregulated in the same women. Blockade of stretch-activated channels with a channel non-specific tarantula toxin (GsMTx-4) or the more specific TREK-1 antagonist L-methionine ethyl ester altered contractile frequency in a dose-dependent manner in pregnant myometrium. Arachidonic acid treatment lowered contractile tension an effect blocked by fluphenazine. Functional studies are consistent with a role for TREK-1 in uterine quiescence. CONCLUSIONS: We provide evidence supporting a role for TREK-1 in contributing to uterine quiescence during gestation and hypothesize that dysregulation of this mechanism may underlie certain cases of spontaneous pre-term birth.


Subject(s)
Gene Expression Regulation , Labor, Obstetric/genetics , Labor, Obstetric/metabolism , Muscle Relaxation , Myometrium/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels/metabolism , Adult , Female , Gene Expression Regulation/drug effects , Humans , In Vitro Techniques , Labor, Obstetric/physiology , Muscle Relaxation/drug effects , Myometrium/drug effects , Myometrium/physiology , Potassium Channel Blockers/pharmacology , Potassium Channels/genetics , Potassium Channels, Tandem Pore Domain/genetics , Pregnancy , Premature Birth/genetics , Premature Birth/metabolism , Premature Birth/physiopathology , Young Adult
19.
Am J Physiol Cell Physiol ; 299(5): C1079-90, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20739625

ABSTRACT

Previous studies in mouse pulmonary arterial smooth muscle cells (PASMCs) showed that cannonical transient receptor potential channel TRPC1 and stromal interaction molecule 1 (STIM1) mediate the sustained component of capacitative Ca(2+) entry (CCE), but the molecular candidate(s) that mediate the transient component of CCE remain unknown. The aim of the present study was to examine whether Orai1 mediates the transient component of CCE through activation of STIM1 in mouse PASMCs. In primary cultured mouse PASMCs loaded with fura-2, cyclopiazonic acid (CPA) caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)). The transient but not the sustained rise in [Ca(2+)](i) was partially inhibited by nifedipine. The nifedipine-insensitive transient rise in [Ca(2+)](i) and the increase in Mn(2+) quench of fura-2 fluorescence caused by CPA were both reduced in cells treated with Orai1 siRNA. These responses to CPA were further reduced in cells treated with Orai1 and STIM1 small interfering (si)RNA. Moreover, overexpression of STIM1 enhanced the rise in [Ca(2+)](i) and the increase in Mn(2+) quench of fura-2 fluorescence caused by CPA, and these responses were reduced in cells treated with Orai1 siRNA. RT-PCR revealed Orai1 and STIM1 mRNAs, and Western blot analysis identified Orai1 and STIM1 proteins in mouse PASMCs. Furthermore, Orai1 was found to coimmunoprecipitate with STIM1, and the precipitation level of Orai1 was increased in cells subjected to store-depletion. Immunostaining revealed colocalization of Orai1 and STIM1 proteins, and the colocalization of these proteins was more apparent after store-depletion. These data provide direct evidence that the transient component of CCE is mediated by Orai1 channel as a result of STIM1 activation in mouse PASMCs.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Membrane Glycoproteins/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/cytology , Animals , Calcium Channels/genetics , Cells, Cultured , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , ORAI1 Protein , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Stromal Interaction Molecule 1 , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
20.
Am J Physiol Cell Physiol ; 299(5): C948-59, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20686072

ABSTRACT

Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle. Western blot analysis with different antibodies directed against TMEM16A revealed a number of products with a consistent band at ∼120 kDa, except portal vein, where an 80-kDa band predominated. TMEM16A protein was identified in the smooth muscle layers of 4-µm-thick slices of portal vein, thoracic aorta, and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent protein (GFP) fusion protein expressed in HEK 293 cells, which correlated to a similar band detected by a GFP antibody. Patch-clamp experiments revealed that I(ClCa) generated by transfection of TMEM16A-GFP in HEK 293 cells displayed remarkable similarities to I(ClCa) recorded in vascular myocytes, including slow kinetics, steep outward rectification, and a response similar to the pharmacological agent niflumic acid. This study shows that TMEM16A expression is robust in murine vascular smooth muscle cells, consolidating the view that this gene is a viable candidate for the native Ca(2+)-activated Cl(-) channel in this cell type.


Subject(s)
Chloride Channels/metabolism , Myocytes, Smooth Muscle/physiology , Protein Biosynthesis , Protein Isoforms/metabolism , Alternative Splicing , Animals , Anoctamin-1 , Cell Line , Chloride Channels/genetics , Gene Expression Profiling , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Myocytes, Smooth Muscle/cytology , Patch-Clamp Techniques , Protein Isoforms/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...