Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Psychopharmacol ; 34(1): e2683, 2019 01.
Article in English | MEDLINE | ID: mdl-30525233

ABSTRACT

OBJECTIVE: According to a series of recent meta-analyses and systematic reviews, aromatherapy has shown to be effective in treating patients with different medical conditions. However, many of the clinical studies are of rather low methodological quality. Moreover, there is much conceptual ambiguity with regard to what aromatherapy actually constitutes. METHOD: In this paper, we discuss the conditions under which aromatherapy is most likely to be of medical value by outlining the workings of the olfactory system and the necessary requirements of odors to be therapeutic. We then introduce an aromatherapeutic inhaler that was tested in a series of studies involving 465 participants. RESULTS: This inhaler (AromaStick®) produced large to very large effects across a variety of physiological target systems (e.g., cardiovascular, endocrine, blood oxygenation, and pain), both short term and long term. DISCUSSION: Inhalation of volatile compounds from essential oils yields almost immediate, large, and clinically relevant effects as long as the scents are delivered highly concentrated from an appropriate device. The changes caused in the body seem side effect-free and can be sustained when inhalation is repeated.


Subject(s)
Aromatherapy/methods , Administration, Inhalation , Humans , Nebulizers and Vaporizers , Smell/physiology
2.
Adv Exp Med Biol ; 856: 343-386, 2016.
Article in English | MEDLINE | ID: mdl-27671730

ABSTRACT

The development and validation of scientific alternatives to animal testing is important not only from an ethical perspective (implementation of 3Rs), but also to improve safety assessment decision making with the use of mechanistic information of higher relevance to humans. To be effective in these efforts, it is however imperative that validation centres, industry, regulatory bodies, academia and other interested parties ensure a strong international cooperation, cross-sector collaboration and intense communication in the design, execution, and peer review of validation studies. Such an approach is critical to achieve harmonized and more transparent approaches to method validation, peer-review and recommendation, which will ultimately expedite the international acceptance of valid alternative methods or strategies by regulatory authorities and their implementation and use by stakeholders. It also allows achieving greater efficiency and effectiveness by avoiding duplication of effort and leveraging limited resources. In view of achieving these goals, the International Cooperation on Alternative Test Methods (ICATM) was established in 2009 by validation centres from Europe, USA, Canada and Japan. ICATM was later joined by Korea in 2011 and currently also counts with Brazil and China as observers. This chapter describes the existing differences across world regions and major efforts carried out for achieving consistent international cooperation and harmonization in the validation and adoption of alternative approaches to animal testing.


Subject(s)
Animal Testing Alternatives/methods , International Cooperation , Validation Studies as Topic , Animals , Humans , Toxicology/methods
3.
Environ Mol Mutagen ; 54(4): 229-39, 2013 May.
Article in English | MEDLINE | ID: mdl-23519787

ABSTRACT

A workshop addressing strategies for the genotoxicity assessment of nanomaterials (NMs) was held on October 23, 2010 in Fort Worth Texas, USA. The workshop was organized by the Environmental Mutagen Society and the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute. The workshop was attended by more than 80 participants from academia, regulatory agencies, and industry from North America, Europe and Japan. A plenary session featured summaries of the current status and issues related to the testing of NMs for genotoxic properties, as well as an update on international activities and regulatory approaches. This was followed by breakout sessions and a plenary session devoted to independent discussions of in vitro assays, in vivo assays, and the need for new assays or new approaches to develop a testing strategy for NMs. Each of the standard assays was critiqued as a resource for evaluation of NMs, and it became apparent that none was appropriate without special considerations or modifications. The need for nanospecific positive controls was questioned, as was the utility of bacterial assays. The latter was thought to increase the importance of including mammalian cell gene mutation assays into the test battery. For in-vivo testing, to inform the selection of appropriate tests or protocols, it was suggested to run repeated dose studies first to learn about disposition, potential accumulation, and possible tissue damage. It was acknowledged that mechanisms may be at play that a standard genotoxicity battery may not be able to capture.


Subject(s)
DNA Damage , Nanostructures/toxicity , Animals , Congresses as Topic , Hazardous Substances/toxicity , Humans , Mutagenicity Tests , Risk Assessment
4.
Mutat Res ; 627(1): 106-16, 2007 Feb 03.
Article in English | MEDLINE | ID: mdl-17123861

ABSTRACT

At the Plymouth Third International Workshop on Genotoxicity Testing in June 2002, a new expert group started a working process to provide guidance on a common strategy for genotoxicity testing beyond the current standard battery. The group identified amongst others "Follow-up testing of tumorigenic agents not positive in the standard genotoxicity test battery" as one subject for further consideration [L. Müller, D. Blakey, K.L. Dearfield, S. Galloway, P. Guzzie, M. Hayashi, P. Kasper, D. Kirkland, J.T. MacGregor, J.M. Parry, L. Schechtman, A. Smith, N. Tanaka, D. Tweats, H. Yamasaki, Strategy for genotoxicity testing and stratification of genotoxicity test results-report on initial activities of the IWGT Expert Group, Mutat. Res. 540 (2003) 177-181]. A workgroup devoted to this topic was formed and met on September 9-10, 2005, in San Francisco. This workgroup was devoted to the discussion of when it would be appropriate to conduct additional genetic toxicology studies, as well as what type of studies, if the initial standard battery of tests was negative, but tumor formation was observed in the rodent carcinogenicity assessment. The important role of the standard genetic toxicology testing to determine the mode of action (MOA) for carcinogenesis (genotoxic versus non-genotoxic) was discussed, but the limitations of the standard testing were also reviewed. The workgroup also acknowledged that the entire toxicological profile (e.g. structure-activity relationships, the nature of the tumor finding and metabolic profiles) of a compound needed to be taken into consideration before the conduct of any additional testing. As part of the meeting, case studies were discussed to understand the practical application of additional testing as well as to form a decision tree. Finally, suitable additional genetic toxicology assays to help determine the carcinogenic MOA or establish a weight of evidence (WOE) argument were discussed and formulated into a decision tree.


Subject(s)
Carcinogens/toxicity , Mutagenicity Tests/methods , Acetamides/toxicity , Animals , Cyproterone Acetate/toxicity , Drug Approval , Drug Industry , Follow-Up Studies , Indoles/toxicity , Japan , Juvenile Hormones/toxicity , Linuron/toxicity , Oxazepam/toxicity , Rodentia , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...