Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Mol Mutagen ; 51(8-9): 919-28, 2010.
Article in English | MEDLINE | ID: mdl-20740630

ABSTRACT

Heritable mutations may result in a wide variety of detrimental outcomes, from embryonic lethality to genetic disease in the offspring. Despite this, today's commonly used test batteries do not include assays for germ cell mutation. Current challenges include a lack of practical assays and concrete evidence for human germline mutagens, and large data gaps that often impede risk assessment. Moreover, most regulatory assessments are based on the assumption that somatic cell mutation assays also protect the germline by default, which has not been adequately confirmed. The field is also faced with new challenges aimed at dramatically reducing animal testing, and attempts to rapidly classify thousands of chemicals using high throughput in vitro assays. These approaches may not adequately capture effects that may be particular to gametes, since many aspects of the germline are unique. In light of these challenges, an urgent need exists to develop new approaches to evaluate the potential of toxicants to cause germline mutation. The application of new technologies will greatly enhance our understanding of mutation in humans exposed to environmental mutagens. However, we must be poised to collect and interpret these data, and facilitate risk translation to regulators and the public. Genetic toxicologists must also become actively involved in the development of high-throughput tools to study germline mutation. Appropriate attention to these areas will result in the development of policies that prioritize the protection of the germline and future generations from DNA sequence mutations.


Subject(s)
Germ-Line Mutation/genetics , Mutagens , History, 21st Century , Humans , Mutagenicity Tests , Mutagens/toxicity , Risk Assessment/trends
2.
Mutat Res ; 598(1-2): 164-93, 2006 Jun 25.
Article in English | MEDLINE | ID: mdl-16542687

ABSTRACT

Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently--the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.


Subject(s)
Germ-Line Mutation , Spermatogenesis/genetics , Animals , Animals, Genetically Modified , Female , Male , Mice , Models, Genetic , Rodentia , Tandem Repeat Sequences , Translocation, Genetic
3.
Mutat Res ; 590(1-3): 1-280, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16081315

ABSTRACT

Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.


Subject(s)
Animals, Genetically Modified , Mutagenesis , Rodentia/genetics , Animals , Mice , Mutagens
SELECTION OF CITATIONS
SEARCH DETAIL
...