Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(8): 4157-4169, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38323694

ABSTRACT

Personalized healthcare devices require an energy storage system that is flexible and has good mechanical strength and stability for long periods. Zn-air batteries show promise as an alternative to Li-air batteries for this purpose. Zn-air batteries with a high theoretical specific energy density of 1350 W h kg-1 have the potential to replace other metal-air batteries but faces the challenges, such as dendrite formation and Zn corrosion, hindering their successful commercialization. In this work, we report the design and performance optimization of a solid-state flexible Zn-air battery with superior performance and good mechanical property. In addition, we focused on the development of a gel-polymer composite membrane as the electrolyte. The main advantage of the flexible electrolyte is its optimum combination of good ionic conductivity and mechanical strength. Thus, we attempted to address the above-mentioned issues by modifying poly(vinyl alcohol) (PVA) with o-g-C3N4 through the in situ formation of a composite. The interaction between the functional groups of o-g-C3N4 and PVA increased the conductivity without compromising the mechanical behavior of the composite. According to the optimization of the composite composition, it was concluded that 0.32 wt% o-g-C3N4 in PVA showed the highest conductivity and excellent mechanical strength (increase from 25 MPa for pristine PVA membrane to 35 MPa for g-C3N4-PVA composite membrane). The performance of the solid-state battery was better (40 hours) than the standard PVA KOH (13 hours) membrane. Moreover, the stability of the battery was retained at various bending angles, demonstrating its potential to be used in flexible electronic devices.

2.
ACS Appl Mater Interfaces ; 15(35): 41447-41456, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37615402

ABSTRACT

Low-cost fabrication of customizable supercapacitors and batteries to power up portable electronic devices is a much-needed step in advancing energy storage devices. The processing methods and techniques involved in developing small-sized entities in complex patterns are expensive, tedious, and time-consuming. Here, we demonstrate the fabrication of customizable electrochemical supercapacitors and batteries by simply employing the universal and conventional paradigm of direct pen writing with hands and evaluating their energy storage performance. The fabrication technique involves the refilling of MoS2 ink into the pen and then scripting of MoS2 nanostructures onto various substrates. The electrode material employed here consists of nanoporous microspheres of MoS2 synthesized by a simple one-step hydrothermal method. Direct pen writing with porous MoS2 in complex patterns enables easy, affordable, and simple fabrication of energy storage devices as and when required based on user choice toward distributed manufacturing and sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL
...