Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Nano Lett ; 23(13): 5975-5980, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37341711

ABSTRACT

Phonon scattering at grain boundaries (GBs) is significant in controlling the nanoscale device thermal conductivity. However, GBs could also act as waveguides for selected modes. To measure localized GB phonon modes, milli-electron volt (meV) energy resolution is needed with subnanometer spatial resolution. Using monochromated electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) we have mapped the 60 meV optic mode across GBs in silicon at atomic resolution and compared it to calculated phonon densities of states (DOS). The intensity is strongly reduced at GBs characterized by the presence of 5- and 7-fold rings where bond angles differ from the bulk. The excellent agreement between theory and experiment strongly supports the existence of localized phonon modes and thus of GBs acting as waveguides.

3.
Nanoscale ; 13(3): 1652-1662, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33428702

ABSTRACT

Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B4C), the third hardest known material, into ultrathin nanosheets. B4C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B4C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B4C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B4C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at the surface. Atomic force microscopy (AFM) shows that the nanosheets produced by LPE are as thin as 5 nm, with an average thickness of 31.4 nm and average area of 16 000 nm2. Raman spectroscopy shows that many of the nanosheets exhibit additional carbon-rich peaks that change with laser irradiation, which are attributed to atomic rearrangements and amorphization at the nanosheet surfaces, consistent with the diverse cleavage planes. High-resolution transmission electron microscopy (HRTEM) demonstrates that many different cleavage planes exist among the exfoliated nanosheets, in agreement with DFT simulations. This work elucidates the exfoliation mechanism of 2D B4C and suggests that LPE can be applied to generate nanosheets from a variety of non-layered and non-vdW materials.

4.
Nanoscale ; 11(42): 20245-20251, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31621764

ABSTRACT

Recent studies have demonstrated that tellurene is a van der Waals (vdW) two-dimensional material with potential optoelectronic and thermoelectric applications as a result of its pseudo-one-dimensional structure and properties. Here, we report on the pressure induced anomalous phase transition of tellurium nanoribbons. The observation of clean phase transitions was made possible with high quality single crystalline Te nanoribbons that are synthesized by hydrothermal reaction growth. The results show that phase transition has a large pressure hysteresis and multiple competing phases: during compression, the phase transition is sudden and takes place from trigonal to orthorhombic phase at 6.5 GPa. Orthorhombic phase remains stable up to higher pressures (15 GPa). In contrast, phase transition is not sudden during decompression, but orthorhombic and trigonal phases co-exist between 6.9 to 3.4 GPa. Grüneisen parameter calculations further confirm the presence of co-existing phases and suggest hysteretic phase change behavior. Finally, orthorhombic to trigonal phase transition occurs at 3.4 GPa which means overall pressure hysteresis is around 3.1 GPa.

5.
Nat Commun ; 10(1): 443, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683857

ABSTRACT

The photocatalytic conversion of the greenhouse gas CO2 to chemical fuels such as hydrocarbons and alcohols continues to be a promising technology for renewable generation of energy. Major advancements have been made in improving the efficiencies and product selectiveness of currently known CO2 reduction electrocatalysts, nonetheless, materials discovery is needed to enable economically viable, industrial-scale CO2 reduction. We report here the largest CO2 photocathode search to date, starting with 68860 candidate materials, using a rational first-principles computation-based screening strategy to evaluate synthesizability, corrosion resistance, visible-light absorption, and compatibility of the electronic structure with fuel synthesis. The results confirm the observation of the literature that few materials meet the stringent CO2 photocathode requirements, with only 52 materials meeting all requirements. The results are well validated with respect to the literature, with 9 of these materials having been studied for CO2 reduction, and the remaining 43 materials are discoveries from our pipeline that merit further investigation.

6.
2d Mater ; 42017.
Article in English | MEDLINE | ID: mdl-33282319

ABSTRACT

The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T' semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The Mo1-x WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk Mo1-xWxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T', and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T', and T d regions, as well as a two-phase 1T' + T d region. Disorder arising from compositional fluctuations in Mo1-xWxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T'-MoTe2 mode and the enhancement of a double-resonance Raman process in 2H-Mo1-x WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in Mo1-xWxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this system.

7.
Adv Electron Mater ; 2(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27840807

ABSTRACT

The need for low-cost high-performance broadband photon detection with sensitivity in the near infrared (NIR) has driven interest in new materials that combine high absorption with traditional electronic infrastructure (CMOS) compatibility. Here, we demonstrate a facile, low-cost and scalable, catalyst-free one-step solution-processed approach to grow one-dimensional Sb2Se3 nanostructures directly on flexible substrates for high-performance NIR photodetectors. Structural characterization and compositional analyses reveal high-quality single-crystalline material with orthorhombic crystal structure and a near-stoichiometric Sb/Se atomic ratio. We measure a direct band gap of 1.12 eV, which is consistent with predictions from theoretical simulations, indicating strong NIR potential. The fabricated metal-semiconductor-metal photodetectors exhibit fast response (on the order of milliseconds) and high performance (responsivity ~ 0.27 A/W) as well as excellent mechanical flexibility and durability. The results demonstrate the potential of molecular-ink-based Sb2Se3 nanostructures for flexible electronic and broadband optoelectronic device applications.

8.
ACS Nano ; 10(10): 9626-9636, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27704774

ABSTRACT

We study the crystal symmetry of few-layer 1T' MoTe2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition-metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe2 and clears up a discrepancy in the literature. The Raman results were also compared with density functional theory simulations and are in excellent agreement with the layer-dependent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

9.
Nano Lett ; 16(10): 6064-6069, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27603879

ABSTRACT

Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the tomographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom probe tomography (APT). APT analysis shows that Ag dopes both Bi2Se3 and PbSe layers in (PbSe)5(Bi2Se3)3, and correlations in the position of Ag atoms suggest a pairing across neighboring Bi2Se3 and PbSe layers. Density functional theory (DFT) calculations confirm the favorability of substitutional doping for both Pb and Bi and provide insights into the observed spatial correlations in dopant locations.

10.
ACS Nano ; 9(10): 9885-91, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26312745

ABSTRACT

Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

11.
J Phys Chem Lett ; 6(6): 1087-98, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-26262874

ABSTRACT

Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

12.
Nano Lett ; 14(8): 4763-6, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25046038

ABSTRACT

Ordered assemblies of inorganic nanocrystals coated with organic linkers present interesting scientific challenges in hard and soft matter physics. We demonstrate that a nanocrystal superlattice under compression serves as a nanoscopic pressure cell to enable studies of molecular linkers under uniaxial compression. We developed a method to uniaxially compress the bifunctional organic linker by attaching both ends of aliphatic chains to neighboring PbS nanocrystals in a superlattice. Pressurizing the nanocrystal superlattice in a diamond anvil cell thus results in compression of the molecular linkers along their chain direction. Small-angle and wide-angle X-ray scattering during the compression provide insights into the structure of the superlattice and nanocrystal cores under compression, respectively. We compare density functional theory calculations of the molecular linkers as basic Hookean springs to the experimental force-distance relationship. We determine the density of linkers on the nanocrystal surfaces. We demonstrate our method to probe the elastic force of single molecule as a function of chain length. The methodology introduced in this paper opens doors to investigate molecular interactions within organic molecules compressed within a nanocrystal superlattice.


Subject(s)
Lead/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Sulfides/chemistry
13.
ACS Nano ; 7(1): 385-95, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23244231

ABSTRACT

van der Waals epitaxial growth of graphene on c-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH(4) partial pressure, growth temperature, and H(2)/CH(4) ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm(2)/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10-10] || sapphire [11-20]) for about 80-90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ~24 µm(-2), and a lateral growth rate of ~82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation.


Subject(s)
Aluminum Oxide/chemistry , Crystallization/methods , Graphite/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Catalysis , Computer Simulation , Gases/chemistry , Materials Testing , Metals/chemistry , Particle Size , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...