Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 176: 113432, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35217418

ABSTRACT

Seagrasses provide vital ecosystem services which include the accumulation and storage of carbon and nutrients in sediments and biomass. Despite their importance in climate change mitigation and adaptation, seagrass ecosystems have been poorly studied, particularly in the Pacific. Therefore, the present study assessed variability in sedimentary and vegetative C, N and P storage in three monospecific seagrass meadows (Halophila ovalis, Halodule pinifolia and Halodule uninervis), reporting baseline data for the first time. Sediment Corg stocks ranged from 31 to 47 Mg C ha-1 and varied (p < 0.001) between seagrass meadows, unvegetated areas and locations. Comparison of N and P storage between vegetated meadows and unvegetated areas revealed differences (p < 0.05); implying seagrass meadows function as C, N and P sinks. Differences in species composition and environmental conditions, may play a key role in estimating C, N and P stocks, which are valuable data for conservation and monitoring of seagrass ecosystems.


Subject(s)
Carbon , Ecosystem , Carbon/analysis , Carbon Sequestration , Geologic Sediments , Nitrogen , Pacific Islands , Phosphorus
2.
Mar Pollut Bull ; 171: 112745, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34325150

ABSTRACT

A unique feature of seagrass among other ecosystem services is to have high phytoremediation potential that is a cost-effective plant-based approach and environmentally friendly solution for metal contamination in coastal areas. The goal of this study was to assess the phytoremediation prospective of seagrass for Cu, Fe, Mn and Zn in Fiji Islands. Heavy metal content was measured in sediments and tissues of the seagrasses Halophila ovalis, Halodule pinifolia and Halodule uninervis to test for local-scale differences. The local study shows that metal concentration in sediment and seagrass tissue was significantly variable, regardless of species and sediment type. Sedimentary concentration of Cu, Fe, Mn and Zn obtained in the present study seemed to be lower than that of previous studies. The results support that H. ovalis is a good bioindicator species since it accumulated up to 5-fold more of these metals compared to the Halodule species.


Subject(s)
Ecosystem , Metals, Heavy , Biomass , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Pacific Islands , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...