Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Sens ; 8(2): 443-464, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36683281

ABSTRACT

Porphyrinoids and their analogous compounds play an important role in biosensing applications on account of their unique and versatile catalytic, coordination, photophysical, and electrochemical properties. Their remarkable arrays of properties can be finely tuned by synthetically modifying the porphyrinoid ring and varying the various structural parameters such as peripheral functionalization, metal coordination, and covalent or physical conjugation with other organic or inorganic scaffolds such as nanoparticles, metal-organic frameworks, and polymers. Porphyrinoids and their organic-inorganic conjugates are not only used as responsive materials but also utilized for the immobilization and embedding of biomolecules for applications in wearable devices, fast sensing devices, and other functional materials. The present review delineates the impact of different porphyrinoid conjugates on their physicochemical properties and their specificity as biosensors in a range of applications. The newest porphyrinoid types and their synthesis, modification, and functionalization are presented along with their advantages and performance improvements.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Nanoparticles , Wearable Electronic Devices , Metal-Organic Frameworks/chemistry , Polymers/chemistry , Nanoparticles/chemistry
2.
Nanoscale ; 14(37): 13667-13678, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36082910

ABSTRACT

Linear oscillatory motion of domain walls (DWs) in the kHz and MHz regime is crucial when realizing precise magnetic field sensors such as giant magnetoimpedance devices. Numerous magnetically active defects lead to pinning of the DWs during their motion, affecting the overall behavior. Thus, the direct monitoring of the domain wall's oscillatory behavior is an important step to comprehend the underlying micromagnetic processes and to improve the magnetoresistive performance of these devices. Here, we report an imaging approach to investigate such DW dynamics with nanoscale spatial resolution employing conventional table-top microscopy techniques. Time-averaged magnetic force microscopy and Kerr imaging methods are applied to quantify the DW oscillations in Ni81Fe19 rectangular structures with Landau domain configuration and are complemented by numeric micromagnetic simulations. We study the oscillation amplitude as a function of external magnetic field strength, frequency, magnetic structure size, thickness and anisotropy and understand the excited DW behavior as a forced damped harmonic oscillator with restoring force being influenced by the geometry, thickness, and anisotropy of the Ni81Fe19 structure. This approach offers new possibilities for the analysis of DW motion at elevated frequencies and at a spatial resolution of well below 100 nm in various branches of nanomagnetism.

3.
Article in English | MEDLINE | ID: mdl-35595620

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the presence of circulating tumor cells (CTCs) and their correlation with prognostic factors and clinical outcomes in treatment-naive patients with oral squamous cell carcinoma. STUDY DESIGN: CTCs were isolated using OncoDiscover technique from presurgically obtained peripheral blood of 152 patients with treatment naïve oral squamous cell carcinoma. Sensitivity analysis was performed by including 40 healthy controls. CTCs cutoff values for clinicopathologic factors were obtained from receiver operating characteristic curves. Multivariate models determined the significance of CTC as independent variables. Kaplan-Meier analysis differentiated in overall survival between CTC values corresponding to the stage. RESULTS: Sensitivity, specificity, and accuracy of CTC detection were 94.32%, 98%, and 95.17%, respectively. Platform differentiated true positives at >3.5 CTCs (P < .00001). CTCs above 20.5 were suggestive of nodal metastasis (P < .0001) with a linear trend for detecting occult metastasis (P = .061). Early and advanced stages could be differentiated by >13.5 CTCs (P < .0001). Elevated CTCs were significantly associated with extranodal extension (>21.45 CTCs, P = .025), perineural invasion (>19.35 CTCs, P = .049), and depth of invasion (>12.5 CTCs, P = .0038). Median survival was reduced by 19 months when CTCs were >13. CONCLUSIONS: Preoperative CTC levels demonstrated a strong correlation with adverse clinicopathology factors and suggested its role as a sensitive prognostic marker to predict survival outcome and disease progress.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Humans , Mouth Neoplasms/therapy , Neoplastic Cells, Circulating/pathology , Prognosis , Squamous Cell Carcinoma of Head and Neck
4.
Lab Chip ; 22(8): 1519-1530, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35266489

ABSTRACT

Circulating tumor cells (CTCs) are distinct cancer biomarkers established in clinical settings for early cancer detection, metastasis progression, and minimal residual disease (MRD) monitoring. Despite numerous advances, the comprehensive molecular characterization of CTCs is extremely challenging owing to their rarity and heterogeneity. Here, we present a novel cotton microfluidic substrate (CMS) as an innovative biomedical matrix that efficiently isolates CTCs while facilitating in vitro CTC expansion to enable a further downstream analysis of these rare cells. CMS enabled static and dynamic isolation of cells from the MCF-7 cancer cell line, as well as from head and neck squamous cell carcinoma (HNSCC) patients' blood and the cell capture efficiencies were further compared with a clinically regulated OncoDiscover® Liquid Biopsy Test. Further, CMS acted as a matrix on which the captured cancer cells were grown in 3D tumor models for studying anti-cancer drug efficacy and multi-drug resistance (MDR) mechanisms. The design of the CMS employed two different surface chemistries, flattened and nanostructured surfaces, each conjugated to anti-EpCAM antibodies to evaluate the CTC capture efficiency and 3D tumor growth dynamics. The nanostructured surface was highly efficient for capturing CTCs and promoted 3D tumor spheroid formation with a 5-fold increase in size from day 03 to day 10 of culture. Moreover, when treated with an anti-cancer drug, cisplatin, an almost 1/2 reduction in tumor size was achieved within 24 hours, followed by a cytostatic threshold and eventual acquisition of drug resistance within 3 days. Conclusively, the CMS matrix exhibits potential for further development of "tissue on chip" and "point-of-care" medical devices in cancer diagnostics, and chemo-therapeutic efficacy evaluations in both drug discovery and development.


Subject(s)
Antineoplastic Agents , Neoplastic Cells, Circulating , Antibodies , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Separation , Humans , Liquid Biopsy , Neoplastic Cells, Circulating/pathology
5.
Sci Adv ; 7(51): eabl5408, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34919439

ABSTRACT

Existing electronically integrated catheters rely on the manual assembly of separate components to integrate sensing and actuation capabilities. This strongly impedes their miniaturization and further integration. Here, we report an electronically integrated self-assembled microcatheter. Electronic components for sensing and actuation are embedded into the catheter wall through the self-assembly of photolithographically processed polymer thin films. With a diameter of only about 0.1 mm, the catheter integrates actuated digits for manipulation and a magnetic sensor for navigation and is capable of targeted delivery of liquids. Fundamental functionalities are demonstrated and evaluated with artificial model environments and ex vivo tissue. Using the integrated magnetic sensor, we develop a strategy for the magnetic tracking of medical tools that facilitates basic navigation with a high resolution below 0.1 mm. These highly flexible and microsized integrated catheters might expand the boundary of minimally invasive surgery and lead to new biomedical applications.

6.
J Mater Chem B ; 9(13): 2946-2978, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33480960

ABSTRACT

Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.


Subject(s)
Biomarkers, Tumor/analysis , Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Humans
7.
J Org Chem ; 85(11): 7068-7076, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32402192

ABSTRACT

A route to synthesize 1,2-disubstituted glucals has been developed, which were further converted to substituted chromanes by thermal 6π-electrocyclization in HMPA followed by in situ aromatization. One of the key steps in the synthesis of chromane is metal-free generation of C1-substituted glucal from d-mannose, which was further converted to 1,2-disubstituted glucals by Pd-catalyzed Fujiwara-Moritani reaction with styrenes, acrylates, acrylamide, acrylonitrile, and ethyl vinyl ketone in good yields.

8.
Article in English | MEDLINE | ID: mdl-29988463

ABSTRACT

Botulism outbreak due to consumption of food contaminated with botulinum neurotoxins (BoNTs) is a public health emergency. The threat of bioterrorism through deliberate distribution in food sources and/or aerosolization of BoNTs raises global public health and security concerns due to the potential for high mortality and morbidity. Rapid and reliable detection methods are necessary to support clinical diagnosis and surveillance for identifying the source of contamination, performing epidemiological analysis of the outbreak, preventing and responding to botulism outbreaks. This review considers the applicability of various BoNT detection methods and examines their fitness-for-purpose in safeguarding the public health and security goals.

9.
Eur J Med Chem ; 150: 268-281, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29529504

ABSTRACT

A series of ß-d-ribofuranosyl coumarinyl-1,2,3-triazoles have been synthesized by Cu-catalyzed cycloaddition reaction between azidosugar and 7-O-/7-alkynylated coumarins in 62-70% overall yields. The in vitro antimycobacterial activity evaluation of the synthesized triazolo-conjugates against Mycobacterium tuberculosis revealed that compounds were bactericidal in nature and some of them were found to be more active than one of the first line antimycobacterial drug ethambutol against sensitive reference strain H37Rv, and 7 to 420 times more active than all four first line antimycobacterial drugs (isoniazid, rifampicin, ethambutol and streptomycin) against multidrug resistant clinical isolate 591. Study of in silico pharmacokinetic profile indicated the drug like characters for the test molecules. Further, transmission electron microscopic experiments revealed that these compounds interfere with the constitution of bacterial cell wall possibly by targeting mycobacterial InhA and DNA gyrase enzymes. Study conducted on the activities of the test compounds on bacterial InhA and DNA gyrase revealed that the most bactericidal test compound, N1-(ß-d-ribofuranosyl)-C4-(4-methylcoumarin-7-oxymethyl)-1,2,3-triazole (6b) and its corresponding directly linked conjugate N1-(ß-d-ribofuranosyl)-C4-(4-methylcoumarin-7-yl)-1,2,3-triazole (11b) significantly inhibited the activity of both the enzymes. The results were further supported by molecular docking studies of the compound 6b and 11b with bacterial InhA and DNA gyrase B enzymes. Further, the cytotoxicity study of some of the better active compounds on THP-1 macrophage cell line using MTT assay showed that the synthesized compounds were non-cytotoxic.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
10.
J Org Chem ; 80(21): 11169-74, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26421380

ABSTRACT

A convenient route has been developed for the diastereoselective synthesis of ß-C-glycopyranosyl aldehydes from D-glucose, D-mannose, and D-galactose. The key step in the synthesis of C-glycosyl aldehydes is the aryl driven reductive dehydration on 1-phenyl-2-(2',3',4',6'-tetra-O-acetyl-ß-D-glycopyranosyl)ethanone to afford alkenes, which on oxidation afford the desired compounds in good yield. ß-C-Glycopyranosyl aldehydes have been converted to 2,6-anhydro-heptitols in quantitative yields. The 2,6-anhydro-heptitols derived from D-mannose and D-galactose are enantiomeric and are useful linkers for the synthesis of macrocycles/amphiphiles of complementary chirality.


Subject(s)
Aldehydes/chemical synthesis , Galactose/chemistry , Glycosides/chemical synthesis , Mannose/chemistry , Monosaccharides/chemistry , Sugar Alcohols/chemistry , Aldehydes/chemistry , Glycosides/chemistry , Magnetic Resonance Spectroscopy , Stereoisomerism
11.
Anal Chem ; 87(2): 922-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25521812

ABSTRACT

We present an innovative centrifugal microfluidic immunoassay platform (SpinDx) to address the urgent biodefense and public health need for ultrasensitive point-of-care/incident detection of botulinum toxin. The simple, sample-to-answer centrifugal microfluidic immunoassay approach is based on binding of toxins to antibody-laden capture particles followed by sedimentation of the particles through a density-media in a microfluidic disk and quantification by laser-induced fluorescence. A blind, head-to-head comparison study of SpinDx versus the gold-standard mouse bioassay demonstrates 100-fold improvement in sensitivity (limit of detection = 0.09 pg/mL), while achieving total sample-to-answer time of <30 min with 2-µL required volume of the unprocessed sample. We further demonstrate quantification of botulinum toxin in both exogeneous (human blood and serum spiked with toxins) and endogeneous (serum from mice intoxicated via oral, intranasal, and intravenous routes) samples. SpinDx can analyze, without any sample preparation, multiple sample types including whole blood, serum, and food. It is readily expandable to additional analytes as the assay reagents (i.e., the capture beads and detection antibodies) are disconnected from the disk architecture and the reader, facilitating rapid development of new assays. SpinDx can also serve as a general-purpose immunoassay platform applicable to diagnosis of other conditions and diseases.


Subject(s)
Botulinum Toxins/blood , Botulinum Toxins/chemistry , Immunoassay/instrumentation , Microfluidics/instrumentation , Animals , Botulinum Toxins/immunology , Female , Food Analysis , Humans , Mice
12.
J Biol Chem ; 280(47): 39346-52, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16179354

ABSTRACT

Botulinum neurotoxins (serotypes A-G), the most toxic substances known to humankind, cause flaccid muscle paralysis by blocking acetylcholine release at nerve-muscle junctions through a very specific and exclusive endopeptidase activity against SNARE proteins of presynaptic exocytosis machinery. We have examined polypeptide folding of the endopeptidase moiety of botulinum neurotoxin/A (the light chain) under conditions of its optimal enzymatic activity and have found that one of its stable conformational states is a molten-globule, which retains over 60% of its optimal enzyme activity. More importantly, we have discovered that the light chain acquires a novel pre-imminent molten-globule enzyme conformation at the physiologically relevant temperature, 37 degrees C. The pre-imminent molten-globule enzyme form also exhibited the maximum endopeptidase activity against its intracellular substrate, SNAP-25 (synaptosomal associated protein of 25 kDa). These findings will not only open new avenues to design effective diagnostics and antidotes against botulism but also provide new information on enzymatically active molten-globule or molten-globule like structures.


Subject(s)
Botulinum Toxins, Type A/chemistry , Botulinum Toxins, Type A/toxicity , Botulinum Toxins, Type A/metabolism , Circular Dichroism , Endopeptidases/chemistry , Endopeptidases/metabolism , Humans , In Vitro Techniques , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/toxicity , Spectrophotometry, Ultraviolet , Substrate Specificity , Synaptosomal-Associated Protein 25/chemistry , Synaptosomal-Associated Protein 25/metabolism , Temperature
13.
Washington, D.C; Pan American Health Organization; 1975. 49 p. Tab.
Non-conventional in English | PAHO | ID: pah-4296
SELECTION OF CITATIONS
SEARCH DETAIL
...