Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 672: 45-53, 2023 09 10.
Article in English | MEDLINE | ID: mdl-37336124

ABSTRACT

Secretory proteins are used by pathogenic bacteria to manipulate the host systems and compete with other microorganisms, thereby enabling their survival in their host. Similar to other bacteria, secretory proteins of Mycobacterium tuberculosis also play a pivotal role in evading immune response within hosts, thereby leading to acute and latent tuberculosis infection. Prokaryotes have several classes of bacterial secretory systems out of which the Sec and Tat pathways are the most conserved in Mtb to transport proteins across the cytoplasmic membrane. Here, we report the crystal structure of a secretory protein, Rv0398c determined to 1.9 Å resolution. The protein comprises a core of antiparallel ß sheets surrounded by α helices adopting a unique ß sandwich fold. Structural comparison with other secretory proteins in Mtb and other pathogenic bacteria reveals that Rv0398c may be secreted via the Sec pathway. Our structural and in silico analyses thus provide mechanistic insights into the pathway adopted by Mtb to transport out secretory protein, Rv0398c which will facilitate the invasion to the host immune system.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis , Bacterial Proteins/metabolism , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Carrier Proteins/metabolism , Biological Transport
2.
FEBS J ; 290(16): 3997-4022, 2023 08.
Article in English | MEDLINE | ID: mdl-37026388

ABSTRACT

Tuberculosis (TB) is one of the leading causes of human death caused by Mycobacterium tuberculosis (Mtb). Mtb can enter into a long-lasting persistence where it can utilize fatty acids as the carbon source. Hence, fatty acid metabolism pathway enzymes are considered promising and pertinent mycobacterial drug targets. FadA2 (thiolase) is one of the enzymes involved in Mtb's fatty acid metabolism pathway. FadA2 deletion construct (ΔL136-S150) was designed to produce soluble protein. The crystal structure of FadA2 (ΔL136-S150) at 2.9 Å resolution was solved and analysed for membrane-anchoring region. The four catalytic residues of FadA2 are Cys99, His341, His390 and Cys427, and they belong to four loops with characteristic sequence motifs, i.e., CxT, HEAF, GHP and CxA. FadA2 is the only thiolase of Mtb which belongs to the CHH category containing the HEAF motif. Analysing the substrate-binding channel, it has been suggested that FadA2 is involved in the ß-oxidation pathway, i.e., the degradative pathway, as the long-chain fatty acid can be accommodated in the channel. The catalysed reaction is favoured by the presence of two oxyanion holes, i.e., OAH1 and OAH2. OAH1 formation is unique in FadA2, formed by the NE2 of His390 present in the GHP motif and NE2 of His341 present in the HEAF motif, whereas OAH2 formation is similar to CNH category thiolase. Sequence and structural comparison with the human trifunctional enzyme (HsTFE-ß) suggests the membrane-anchoring region in FadA2. Molecular dynamics simulations of FadA2 with a membrane containing POPE lipid were conducted to understand the role of a long insertion sequence of FadA2 in membrane anchoring.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Substrate Specificity , Acetyl-CoA C-Acetyltransferase/chemistry , Acetyl-CoA C-Acetyltransferase/metabolism
3.
FEBS J ; 289(16): 4963-4980, 2022 08.
Article in English | MEDLINE | ID: mdl-35175661

ABSTRACT

Comprehending the molecular strategies employed by Mycobacterium tuberculosis (Mtb) in FAS-II regulation is of paramount significance for curbing tuberculosis progression. Mtb employs two sets of dehydratases, namely HadAB and HadBC (ß-hydroxyacyl acyl carrier protein dehydratase), for the regulation of the fatty acid synthase (FAS-II) pathway. We utilized a sequence similarity network to discern the basis for the presence of two copies of the dehydratase gene in Mtb. This analysis groups HadC and HadA in different clusters, which could be attributed to the variability in their physiological role with respect to the acyl chain uptake. Our study reveals structural details pertaining to the crystal structure of the last remaining enzyme of the FAS-II pathway. It also provides insights into the highly flexible hot-dog helix and substrate regulatory loop. Additionally, mutational studies assisted in establishing the role of the C-terminal end in HadC of HadBC in the regulation of acyl carrier protein from Mtb-mediated interactions. Complemented with surface plasmon resonance and molecular dynamics simulation studies, the present study provides the first evidence of the molecular mechanisms involved in the differential binding affinity of the acyl carrier protein from Mtb towards both mtbHadAB and mtbHadBC.


Subject(s)
Mycobacterium tuberculosis , Mycolic Acids , Acyl Carrier Protein/genetics , Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Fatty Acid Synthase, Type II/chemistry , Fatty Acid Synthase, Type II/genetics , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Hydro-Lyases/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids/metabolism
4.
Org Biomol Chem ; 20(7): 1444-1452, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35084426

ABSTRACT

Thioacetazone (TAC) used to be a highly affordable, bacteriostatic anti-TB drug but its use has now been restricted, owing to severe side-effects and the frequent appearance of the TAC resistant M. tuberculosis strains. In order to develop new TAC analogues with fewer side-effects, its target enzymes need to be firmly established. It is now hypothesized that TAC, after being activated by a monooxygenase EthA, binds to the dehydratase complex HadAB that finally leads to a covalent modification of HadA, the main partner involved in dehydration. Another dehydratase enzyme, namely HadC in the HadBC complex, is also thought to be a possible target for TAC, for which definitive evidence is lacking. Herein, using a recently exploited azido naphthalimide template attached to thioacetazone and adopting a photo-affinity based labelling technique, coupled with electrophoresis and in-gel visualization, we have successfully demonstrated the involvement of these enzymes including HadBC along with a possible participation of an alternate mycobacterial monooxygenase MymA. In silico studies also revealed strong interactions between the TAC-probe and the concerned enzymes.


Subject(s)
Antitubercular Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/pharmacology , Hydro-Lyases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Thioacetazone/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Hydro-Lyases/metabolism , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Mycobacterium tuberculosis/enzymology , Thioacetazone/chemical synthesis , Thioacetazone/chemistry
5.
Biochim Biophys Acta Gen Subj ; 1865(10): 129964, 2021 10.
Article in English | MEDLINE | ID: mdl-34252514

ABSTRACT

Background Mycobacterial FASII pathway is governed by the Protein-Protein Interaction mediated dynamics existent between Acyl Carrier Protein and its partner enzymes. The dehydratase HadAB, involved in the third step of FASII synthesis has remained a key target of drugs like Thiacetazone (TAC) and its consequence on AcpM binding is yet to be deciphered. Owing to the transient nature of these interactions, analysing their implications as a drug target has been exhausting. Methods In this context, we have developed an in vitro method to study the effect of thiocarbamide-containing compounds, TAC and SPA0355 (a thiourea analogue) against mycobacterial HadAB. Additionally, by utilizing crypto-ACP (NBD-tagged Acyl Carrier Protein) as a tool of our choice, we attempted at exploring the effect of TAC and SPA0355 on mycobacterial HadAB. Results SPA0355 behaves at par with TAC and undergoes activation in the presence of monooxygenase EthA thus, bringing about a covalent modification in HadA subunit of HadAB. The crypto-ACP method provides insights into the altered substrate housing capability in HadAB associated with the impediment of its AcpM mediated functionality; an outcome attributed to the repercussions associated with the binding of the aforementioned thiourea compounds. Conclusion This investigation has assisted in unveiling a two-step mechanism undertaken by AcpM for interacting with its corresponding partner protein during acyl chain transfer. General significance This study highlights the alterations brought about by drug binding in the interplay between ACP and HadAB. Additionally, this work for the first time establishes the role of SPA0355 as a promising drug candidate against dehydratase HadAB.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydro-Lyases/antagonists & inhibitors , Mycobacterium/enzymology , Thiourea/pharmacology , Bacterial Proteins/metabolism , Enzyme Inhibitors/chemistry , Hydro-Lyases/metabolism , Thiourea/analogs & derivatives , Thiourea/chemistry
6.
FEBS Lett ; 593(6): 622-633, 2019 03.
Article in English | MEDLINE | ID: mdl-30847903

ABSTRACT

In Mycobacterium tuberculosis, acyl carrier protein (AcpM)-mediated fatty acid synthase type II is integral for the synthesis of mycolic acids. AcpM, designated as an atypical ACP, comprises of a putative 33 amino acid long C-terminal extension which is distinctive in nature. Here, we aimed at devising an 'easy-to-go' method for the generation of crypto-AcpM loaded with a solvatochromic probe 7-Nitrobenz-2-oxa-1,3-diazol-4-yl, which is linked to the 4'-phosphopantetheine (Ppant) prosthetic group of AcpM. The crypto-AcpM, coupled with fluorescence spectroscopy and molecular dynamics simulation studies, was employed to explore the elusive dynamics of Ppant arm in AcpM. This investigation establishes the role of the flexible C-terminal extension of AcpM in regulating the prosthetic group sequestration ability by modulating the 'Asp-Ser-Leu' motif.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Coenzyme A/chemistry , Mycobacterium tuberculosis/chemistry , Pantetheine/analogs & derivatives , Amino Acid Motifs , Azoles/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Coenzyme A/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Dyes/chemistry , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycolic Acids/metabolism , Nitrobenzenes/chemistry , Pantetheine/chemistry , Pantetheine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
8.
Indian J Exp Biol ; 53(6): 388-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26155679

ABSTRACT

The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Environmental Pollutants/analysis , Industrial Waste/analysis , Nickel/chemistry , Petroleum , Biodegradation, Environmental , Environmental Pollutants/chemistry , Environmental Pollutants/metabolism , Hydrogen-Ion Concentration , Nickel/analysis , Nickel/metabolism , Temperature
9.
Bull Environ Contam Toxicol ; 89(2): 257-62, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22669336

ABSTRACT

Feasibility study carried out at the site prior to the full scale study showed that the introduced bacterial consortium effectively adapted to the local environment of the soil at bioremediation site. The soil samples were collected from the contaminated fields after treatment with bacterial consortium at different time intervals and analyzed by gas chromatography after extraction with hexane and toluene. At time zero (just before initiation of bioremediation), the concentration of total petroleum hydrocarbons in the soil (25-cm horizon) of plot A, B, C and D was 30.90 %, 18.80 %, 25.90 % and 29.90 % respectively, after 360 days of treatment with microbial consortia was reduced to 0.97 %, 1.0 %, 1.0 %, and 1.1 % respectively. Whereas, only 5 % degradation was observed in the control plot after 365 days (microbial consortium not applied).


Subject(s)
Bacteria/metabolism , Microbial Consortia , Petroleum Pollution , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Chromatography, Gas , Hexanes/metabolism , Hydrocarbons/metabolism , Petroleum/metabolism , Toluene/metabolism
10.
J Hazard Mater ; 167(1-3): 24-37, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19286315

ABSTRACT

Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste. The recovery of metals from these catalysts is an important economic aspect as most of these catalysts are supported, usually on alumina/silica with varying percent of metal; metal concentration could vary from 2.5 to 20%. Metals like Ni, Mo, Co, Rh, Pt, Pd, etc., are widely used as a catalyst in chemical and petrochemical industries and fertilizer industries. They are generally supported on porous materials like alumina and silica through precipitation or impregnation processes. Many workers have adapted pyrometallurgy and Hydrometallurgy process for recovery of precious metals. Many workers have studied the recovery of nickel from a spent catalyst in an ammonia plant by leaching it in sulphuric acid solution (Hydrometallurgy). Ninety-nine percent of the nickel was recovered as nickel sulphate when the catalyst, having a particle size of 0.09 mm was dissolved in an 80% sulphuric acid solution for 50 min in at 70 degrees C. Many researcher have studied the extraction of metals from spent catalyst by roasting-extraction method (Pyrometallurgy). Chelating agents are the most effective extractants, which can be introduced in the soil washing fluid to enhance heavy metal extraction from contaminated soils. The advantages of chelating agents in soil cleanup include high efficiency of metal extraction, high thermodynamic stabilities of the metal complexes formed, good solubilities of the metal complexes, and low adsorption of the chelating agents on soils, But very few workers have attempted chelating agent to extract metals from spent catalyst.


Subject(s)
Fertilizers , Hazardous Waste/prevention & control , Metals, Heavy/isolation & purification , Catalysis , Industrial Waste/prevention & control , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL