Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38957008

ABSTRACT

Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.

2.
Phys Chem Chem Phys ; 26(24): 17383-17395, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38860766

ABSTRACT

Although GaN is a promising candidate for semiconductor devices, degradation of GaN-based device performance may occur when the device is bombarded by high-energy charged particles during its application in aerospace, astronomy, and nuclear-related areas. It is thus of great significance to explore the influence of irradiation on the microstructure and electronic properties of GaN and to reveal the internal relationship between the damage mechanisms and physical characteristics. Using a combined density functional theory (DFT) and ab initio molecular dynamics (AIMD) study, we explored the low-energy recoil events in GaN and the effects of point defects on GaN. The threshold displacement energies (Eds) significantly depend on the recoil directions and the primary knock-on atoms. Moreover, the Ed values for nitrogen atoms are smaller than those for gallium atoms, indicating that the displacement of nitrogen dominates under electron irradiation and the created defects are mainly nitrogen vacancies and interstitials. The formation energy of nitrogen vacancies and interstitials is smaller than that for gallium vacancies and interstitials, which is consistent with the AIMD results. Although the created defects improve the elastic compliance of GaN, these radiation damage states deteriorate its ability to resist external compression. Meanwhile, these point defects lead the Debye temperature to decrease and thus increase the thermal expansion coefficients of GaN. As for the electronic properties of defective GaN, the point defects have various effects, i.e., VN (N vacancy), Gaint (Ga interstitial), Nint (N interstitial), and GaN (Ga occupying the N lattice site) defects induce the metallicity, and NGa (N occupying the Ga lattice site) defects decrease the band gap. The presented results provide underlying mechanisms for defect generation in GaN, and advance the fundamental understanding of the radiation resistances of semiconductor materials.

3.
J Invest Dermatol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844128

ABSTRACT

Granuloma annulare (GA) is an idiopathic condition characterized by granulomatous inflammation in the skin. Prior studies have suggested that GA develops from various triggers, leading to a complex interplay involving innate and adaptive immunity, tissue remodeling, and fibrosis. Macrophages are the major immune cells comprising GA granulomas; however, the molecular drivers and inflammatory signaling cascade behind macrophage activation are poorly understood. Histologically, GA exhibits both palisaded and interstitial patterns on histology; however, the molecular composition of GA at the spatial level remains unexplored. GA is a condition without Food and Drug Administration-approved therapies despite the significant impact of GA on QOL. Spatial transcriptomics is a valuable tool for profiling localized, genome-wide gene expression changes across tissues, with emerging applications in clinical medicine. To improve our understanding of the spatially localized gene expression patterns underlying GA, we profiled the spatial gene expression landscape from 6 patients with GA. Our findings revealed mixed T helper 1 and T helper 2 signals comprising the GA microenvironment and spatially distinct M1 and M2 macrophage polarization characteristics. IFN-γ and TNF signals emerged as important regulators of GA granulomatous inflammation, and IL-32 emerged as a key driver of granulomatous inflammation. Overall, our spatial transcriptomics data indicate that GA exhibits mixed immune and macrophage polarization.

4.
Small ; : e2311836, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770997

ABSTRACT

2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.

5.
ACS Appl Mater Interfaces ; 16(21): 27979-27987, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752682

ABSTRACT

Understanding wear, a critical factor impacting the reliability of mechanical systems, is vital for nano-, meso-, and macroscale applications. Due to the complex nature of nanoscale wear, the behavior of nanomaterials such as two-dimensional materials under cyclic wear and their surface damage mechanism is yet unexplored. In this study, we used atomic force microscopy coupled with molecular dynamic simulations to statistically examine the cyclic wear behavior of monolayer graphene, MoS2, and WSe2. We show that graphene displays exceptional durability and lasts over 3000 cycles at 85% of the applied critical normal load before failure, while MoS2 and WSe2 last only 500 cycles on average. Moreover, graphene undergoes catastrophic failure as a result of stress concentration induced by local out-of-plane deformation. In contrast, MoS2 and WSe2 exhibit intermittent failure, characterized by damage initiation at the edge of the wear track and subsequent propagation throughout the entire contact area. In addition to direct implications for MEMS and NEMS industries, this work can also enable the optimization of the use of 2D materials as lubricant additives on a macroscopic level.

6.
Ecology ; 105(6): e4309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724027

ABSTRACT

Globally, treelines form a transition zone between tree-dominated forest downslope and treeless alpine vegetation upslope. Treelines represent the highest boundary of "tree" life form in high-elevation mountains and at high latitudes. Recently, treelines have been shifting upslope in response to climate warming, so it has become important to understand global tree diversity and treeline distributions. However, to the best of our knowledge, no global database on tree flora of treelines exists, which limits our capacity to undertake macroecological analyses. Here, for the first time, we present a global data set on the trees of the treeline ecotone, supported by an online ToTE database. We synthesized the database from 1202 studies published over the last 60 years (1962 to 2022) following the Preferred Reporting Items in Systematic Reviews and Meta-Analysis (PRISMA) protocol. We classified the tree species in the database into three categories: treeline tree (TL) species, near to treeline (NTL) tree species, and tree species with an upper montane range limit (TUMR). The ToTE Version-1 presents a total of 208 tree taxa, including 189 species, five subspecies, and 14 varieties, belonging to 54 genera and 26 families distributed across 34 mountain regions worldwide that either grow exactly at the treeline or have a range limit below the treeline. Of the total taxa, 155, 14, and 39 belong to TL, NTL, and TUMR, respectively. Genera such as Abies, Picea, Pinus, Larix, and Juniperus are more represented in the treeline tree category. On the other hand, Acer, Prunus, Populus, and Quercus have more representatives in the near to treeline category, whereas Erica, Nothofagus, and Polylepis contribute more tree species with an upper montane range limit. Furthermore, families such as Rosaceae and Pinaceae include trees that occur both at the treeline and with an upper montane range limit, whereas Sapindaceae includes trees that occur exclusively near to treeline. Our database also includes information on the global distribution patterns of treeline tree species richness across mountains and biomes. The mountains with the highest number of tree species are the Andes (39) followed by the Himalaya (37). Close to 67% of tree species show restricted distributions in different mountains, with the highest endemism in the Andes and the Himalaya. In terms of tree species distribution, Pinus sylvestris was widespread, with a distribution across nine mountain regions, followed by Picea glauca and Fagus sylvatica, both distributed across five mountain regions. In terms of species' distribution across biomes, the temperate biome harbors the highest treeline tree species richness (152 species), which may reflect the fact that the majority of studies are available from the temperate regions of the world. The remaining 56 species are distributed within five other biomes, with the least in dry tropical and subarctic (four species each). Furthermore, currently 40 treeline tree species fall under different International Union for Conservation of Nature threat categories. We anticipate that our database will help advance research on macroecological, biogeographic, evolutionary, climate-change, and conservation aspects of the treeline on a global scale. The data are released under a Creative Commons Attribution 4.0 international license. Please cite this data paper when the data are reused.


Subject(s)
Databases, Factual , Trees , Biodiversity , Forests , Ecosystem
7.
Expert Opin Ther Targets ; 28(5): 419-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38686865

ABSTRACT

INTRODUCTION: Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED: This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION: CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.


Subject(s)
Disease Progression , Extracellular Matrix Proteins , Molecular Targeted Therapy , Neoplasms , Signal Transduction , Tumor Microenvironment , Humans , Neoplasms/pathology , Extracellular Matrix Proteins/metabolism , Animals , Up-Regulation , Cell Proliferation
8.
J Pharm Bioallied Sci ; 16(Suppl 1): S619-S622, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595478

ABSTRACT

Aim: The aim and objective of this in vitro study was to evaluate the antibacterial efficacy of mineral trioxide aggregate, bioactive glass sealer, and epoxy-resin-based sealer. Materials and Methods: In the present study, 22 Mueller Hinton agar (MH agar) plates were employed and equally divided into two groups. Three holes were made by removal of agar at equidistant points and filled with root canal sealers. The strains of the bacteria used in this study were S. aureus (ATCC 6538) and C. albicans (ATCC 10231) and were divided into two groups and root canal sealers were divided into three subgroups: mineral trioxide aggregate (MTA) fillapex Sealer, Nishika Bioactive Glass sealer, and Syntex Epoxy Resin base sealer. For Staphylococcus aureus, peptone water was placed in a 2 mL test tube and bacteria were extracted from blood agar plates using a nichrome wire loop and poured into the peptone water-containing test tube and incubated for 2 hours and for C. albicans, fungi were grown at 37°C for 24 hours in MH Broth and seeded into MH agar to produce turbidity of 0.5 on the McFarland scale, which corresponds to a concentration of 108 CFU/mL. This MH broth was used as a second layer. The seeded agar was then added over the plates immediately after the insertion of sealer cement. After incubation, the diameters of zones of inhibition around the plates were measured. Results: The results of this study showed that the highest inhibition was recorded in Syntex sealer against Staphylococcus aureus followed by MTA fillapex sealer and Nishika sealer, whereas MTA fillapex showed the highest inhibition against C. albicans followed by Syntex sealer and Nishika sealer. Conclusion: Syntex sealer exhibits better antibacterial efficacy against Staphylococcus aureus and MTA fillapex exhibit better antibacterial efficacy against C. albicans.

9.
World J Crit Care Med ; 13(1): 86866, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38633476

ABSTRACT

BACKGROUND: Mucormycosis is a rare, rapidly progressive and often fatal fungal infection. The rarity of the condition lends itself to unfamiliarity, delayed treatment, and poor outcomes. Diagnosis of fungal infections early enough to enable appropriate treatment occurs in less than half of affected patients. CASE SUMMARY: An 11-year-old girl with a history of 15% total body surface area scald burns involving both lower limbs progressed to develop angioinvasive mucormycosis. This further led to a thrombosis of the right external iliac artery and vein and rapidly progressive necrosis of surrounding soft tissues. She also had dextrocardia and patent foramen ovale. A right hip disarticulation and serial aggressive debridements were performed but she went on to develop systemic sepsis with multisystem involvement and succumbed to the infection. Pathology revealed mucor species with extensive vascular invasion. CONCLUSION: This case highlights the importance of maintaining vigilance for mycotic infections and acting appropriately when there are signs of fulminant wound infection.

10.
Cureus ; 16(3): e56455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38638730

ABSTRACT

AIMS AND OBJECTIVES:  To determine the predictive value of Emergency Surgery Score (ESS) with regard to mortality and morbidity rates of patients undergoing emergency laparotomy. METHOD: The ESS ranging from 0 to 29 is an extensive risk calculator based on 22 variables including important parameters like demographics, preoperative treatment, comorbidities, and laboratory values. Twenty patients who underwent emergency laparotomy were preoperatively assessed and ESS was calculated for each. After establishment of diagnosis and resuscitation, the patient was taken up for emergency laparotomy. Postoperatively, patients were monitored clinically as well as with laboratory and radiological investigations as per case needed till discharge and further followed up physically in OPD/ward or interviewed telephonically for 30 days on a weekly basis. Incidence of mortality and morbidity in terms of postoperative complications, ICU admission, reoperation and readmission among the cases occurring within 30 days of procedure were recorded. RESULTS: ESS correlated well with the outcome in the current study, 10 out of 14 patients with score less than 8 were discharged without any complications. Mean ESS was higher among non-survivors. Ability of ESS to predict postoperative mortality, morbidity and ICU stay was proven statistically with c-statistics of 0.853, 0.84, 0.879 respectively. ESS was found to be a good predictor for the development of postoperative lower respiratory tract infection (LRTI) (c-statistic=0.828), sepsis (c-statistic=0.867), disseminated intravascular coagulation (DIC) (c-statistic=0.805), acute kidney injury (AKI) (c-statistic=0.804). ESS showed poor correlation with reoperation and readmission rates. CONCLUSION: The current study underscores the critical importance of employing risk stratification through ESS for patients undergoing emergency laparotomy. By employing ESS, healthcare professionals can accurately anticipate resuscitation requirements and stabilize patients preoperatively. This proactive approach enables the identification and optimization of patients unsuitable for immediate surgery, facilitating informed decisions on targeted treatment, surgical intervention, and postoperative care pathways.

11.
J Am Chem Soc ; 146(15): 10847-10856, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38583085

ABSTRACT

Transition-metal-catalyzed carbene insertion reactions of a nitrogen-hydrogen bond have emerged as robust and versatile methods for the construction of C-N bonds. While significant progress of homogeneous catalytic metal carbene N-H insertions has been achieved, the control of chemoselectivity in the field remains challenging due to the high electrophilicity of the metal carbene intermediates. Herein, we present an efficient strategy for the synthesis of a rhodium single-atom-site catalyst (Rh-SA) that incorporates a Rh atom surrounded by three nitrogen atoms and one phosphorus atom doped in a carbon support. This Rh-SA catalyst, with a catalyst loading of only 0.15 mol %, exhibited exceptional catalytic performance for heterogeneous carbene insertion with various anilines and heteroaryl amines in combination with diazo esters. Importantly, the heterogeneous catalyst selectively transformed aniline derivatives bearing multiple nucleophilic moieties into single N-H insertion isomers, while the popular homogeneous Rh2(OAc)4 catalyst produced a mixture of overfunctionalized side products. Additionally, similar selectivities for N-H bond insertion with a set of stereoelectronically diverse diazo esters were obtained, highlighting the general applicability of this heterogeneous catalysis approach. On the basis of density functional theory calculations, the observed selectivity of the Rh-SA catalyst was attributed to the insertion barriers and the accelerated proton transfer assisted by the phosphorus atom in the support. Overall, this investigation of heterogeneous metal-catalyzed carbene insertion underscores the potential of single-atom-site catalysis as a powerful and complementary tool in organic synthesis.

12.
Small ; : e2401269, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687141

ABSTRACT

Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.

13.
Curr Microbiol ; 81(6): 148, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642082

ABSTRACT

The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.


Subject(s)
Environmental Pollutants , Metals, Heavy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Bacteria/genetics
14.
Nano Lett ; 24(14): 4291-4299, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551180

ABSTRACT

With the advantages of a Fenton-inactive characteristic and unique p electrons that can hybridize with O2 molecules, p-block metal-based single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) have tremendous potential. Nevertheless, their undesirable intrinsic activity caused by the closed d10 electronic configuration remains a major challenge. Herein, an Sb-based SAC featuring carbon vacancy-enhanced Sb-N4 active centers, corroborated by the results of high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure, has been developed for an incredibly effective ORR. The obtained SbSA-N-C demonstrates a positive half-wave potential of 0.905 V and excellent structural stability in alkaline environments. Density functional theory calculations reveal that the carbon vacancies weaken the adsorption between Sb atoms and the OH* intermediate, thus promoting the ORR performance. Practically, the SbSA-N-C-based Zn-air batteries achieve impressive outcomes, such as a high power density of 181 mW cm-2, showing great potential in real-world applications.

15.
J Colloid Interface Sci ; 665: 518-525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547633

ABSTRACT

Construction of heterogeneous interfaces with dual active components to synergistically promote both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an effective strategy for facilitating electrochemical water splitting, but the appropriate active component regulation via simple synthesis procedures is still challenging. Herein, the Co and Co2Mo3O8 active components are screened to construct effective heterogeneous interfaces and successfully integrated on Ni foam by thermal reduction of cobalt molybdate precursor. And this bifunctional electrode (Co/Co2Mo3O8/NF) required overpotentials of only 164 and 360 mV to drive the 100 mA cm-2 for HER and OER in alkaline media, respectively. Theoretical calculations showed that the electron transfer occurred from Co to Co2Mo3O8 at the interface, then the formed interfacial cobalt atoms with deficient electron were beneficial for water activation, and reduced energy barrier of water dissociation under the synergistic effect of Co2Mo3O8. Notably, the alkaline electrolyzer based on symmetric Co/Co2Mo3O8/NF electrodes generated 100 mA cm-2 at a voltage of only 1.75 V, surpassing commercially available precious-metal Pt/RuO2-based catalysts.

16.
Angew Chem Int Ed Engl ; 63(21): e202318872, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38503685

ABSTRACT

Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.

17.
Cureus ; 16(1): e52246, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352075

ABSTRACT

Molecular biology shines a light of hope amid the complex terrain of cancer, bringing revolutionary approaches to cancer treatment. Instead of providing a synopsis, this review presents an engaging story that sheds light on the genetic nuances controlling the course of cancer. This review goes beyond just listing genetic alterations to examine the complex interactions that lead to oncogene activation, exploring particular triggers such as viral infections or proto-oncogene mutations. A comprehensive grasp of the significant influence of oncogenes is possible through the classification and clarification of their function in various types of cancer. Furthermore, the role of tumor suppressor genes in controlling cell division and preventing tumor growth is fully explained, providing concrete examples and case studies to ground the conversation and create a stronger story. This study highlights the practical applications of molecular biology and provides a comprehensive overview of various detection and treatment modalities. It emphasizes the effectiveness of RNA analysis, immunohistochemistry, and next-generation sequencing (NGS) in cancer diagnosis and prognosis prediction. Examples include the individualized classification of breast cancers through RNA profiling, the use of NGS to identify actionable mutations such as epidermal growth factor receptor and anaplastic lymphoma kinase in lung cancer, and the use of immunohistochemical staining for proteins such as Kirsten rat sarcoma viral oncogene to guide treatment decisions in colorectal cancer. This paper carefully examines how molecular biology is essential to creating new strategies to fight this difficult and widespread illness. It highlights the exciting array of available therapeutic approaches, offering concrete instances of how clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9), targeted pharmaceuticals, immunotherapy, and treatments that induce apoptosis are driving a paradigm shift in cancer care. The revolutionary CRISPR-Cas9 system takes center stage, showcasing how precise gene editing could transform cancer therapy. This study concludes by fervently highlighting the critical role that molecular biology plays in reducing the complexity of cancer and changing the treatment landscape. It lists accomplishments but also thoughtfully examines cases and findings that progress our search for more precisely customized and effective cancer therapies.

19.
Nat Mater ; 23(4): 543-551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278984

ABSTRACT

Silicon is a promising anode material due to its high theoretical specific capacity, low lithiation potential and low lithium dendrite risk. Yet, the electrochemical performance of silicon anodes in solid-state batteries is still poor (for example, low actual specific capacity and fast capacity decay), hindering practical applications. Here the chemo-mechanical failure mechanisms of composite Si/Li6PS5Cl and solid-electrolyte-free silicon anodes are revealed by combining structural and chemical characterizations with theoretical simulations. The growth of the solid electrolyte interphase at the Si|Li6PS5Cl interface causes severe resistance increase in composite anodes, explaining their fast capacity decay. Solid-electrolyte-free silicon anodes show sufficient ionic and electronic conductivities, enabling a high specific capacity. However, microscale void formation during delithiation causes larger mechanical stress at the two-dimensional interfaces of these anodes than in composite anodes. Understanding these chemo-mechanical failure mechanisms of different anode architectures and the role of interphase formation helps to provide guidelines for the design of improved electrode materials.

20.
NPJ Precis Oncol ; 8(1): 6, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184733

ABSTRACT

Polo-like kinase 1 (PLK1), a serine/threonine kinase, is overexpressed in melanoma and its expression has been associated with poor disease prognosis. PLK1 has been shown to interact with NUMB, a NOTCH antagonist. However, the exact role of PLK1, NUMB, and NOTCH signaling in epithelial-mesenchymal transition (EMT) in melanoma progression is unclear. In this study, Affymetrix microarray analysis was performed to determine differentially expressed genes following shRNA-mediated knockdown of PLK1 in human melanoma cells that showed significant modulations in EMT and metastasis-related genes. Using multiple PLK1-modulated melanoma cell lines, we found that PLK1 is involved in the regulation of cell migration, invasion, and EMT via its kinase activity and NOTCH activation. In vitro kinase assay and mass spectrometry analysis demonstrated a previously unknown PLK1 phosphorylation site (Ser413) on NUMB. Overexpression of non-phosphorylatable (S413A) and phosphomimetic (S413D) mutants of NUMB in melanoma cells implicated the involvement of NUMB-S413 phosphorylation in cell migration and invasion, which was independent of NOTCH activation. To determine the clinical relevance of these findings, immunohistochemistry was performed using melanoma tissue microarray, which indicated a strong positive correlation between PLK1 and N-cadherin, a protein required for successful EMT. These findings were supported by TCGA analysis, where expression of high PLK1 with low NUMB or high NOTCH or N-cadherin showed a significant decrease in survival of melanoma patients. Overall, these results suggest a potential role of PLK1 in EMT, migration, and invasion of melanoma cells. Our findings support the therapeutic targeting of PLK1, NUMB, and NOTCH for melanoma management.

SELECTION OF CITATIONS
SEARCH DETAIL
...