Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 241: 114050, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38936032

ABSTRACT

Curcumin, a compound in turmeric, shows promise for its anti-cancer properties. In this study, we successfully synthesised curcumin-reduced and capped gold nanoparticles. Most evaluations have been limited to in-vitro studies for these nanoparticles; our study takes a step further by highlighting the in-vivo assessment of these curcumin-reduced and capped gold nanoparticles (GNPCs) using non-invasive imaging (SPECT and optical) and possible therapeutic potential. The GNPCs showed an average hydrodynamic diameter of 58 nm and a PDI of 0.336. The synthesised and fully characterised GNPCs showed ex-vivo hemolysis value of ≤ 1.74 % and serum stability of ≥ 95 % over 24 h. Using in-vivo non-invasive (SPECT and optical Imaging), prolonged circulation and enhanced bioavailability of GNPCs were seen. The biodistribution studies after radiolabelling GNPCs with 99 mTc complemented the optical imaging. The SPECT images showed higher uptake of the GNPCs at the tumour site, viz the contralateral muscle and the native Curcumin, resulting in a high target-to-non-target ratio that differentiated the tumour sufficiently and enhanced the diagnostics. Other organs also accumulate radiolabeled GNPCs in systemic circulation; bio dosimetry is performed. It was found that the dose received by the different organs was safe for use, and the in-vivo toxicity studies in rats indicated negligible toxicity over 30 days. The tumour growth was also reduced in mice models treated with GNPCs compared to the control. These significant findings demonstrate that GNPC shows synergistic activity in vivo, indicating its ability as a green diagnostic probe that has the potential for therapy.

2.
Nanotechnology ; 35(9)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37995371

ABSTRACT

External hemostatic agents play a crucial role in stabilizing an impaired process during pathological conditions. The idea is to stabilize thein vivosystem as soon as possible. This study uses a class I hemostatic drug tranexamic acid as a reducing and capping agent for synthesizing the gold nanoparticles (Tr-AuNPs). Being the synthetic analogue of lysine and a biologically inspired alkylamine molecule, the chemistry can be fine-tuned for stable material that can simultaneously target the intrinsic and extrinsic hemostatic pathway, making it promising for hemostatic applications. The Tr-AuNPs of hydrodynamic diameter ∼46 nm were synthesized and evaluated physio-chemically using various analytical techniques wherein they showed hemocompatibility and increased thrombus weight compared to the native drug. The decrease in prothrombin time (PT) and international normalized ratio supported by the dynamic thromboelastography (TEG) study indicates the prepared nano-conjugate's potential in reducing time for attaining hemostasis as compared to the native tranexamic acid drug. At a 9µg ml-1concentration, Tr-AuNPs had a procoagulant effect, shown by decreased reaction time (R) and coagulation time (K) with improvedαangle and MA. There was a significant increase in the rate of coagulationin vivoby Tr-AuNPs, i.e. (52 s) compared to the native tranexamic acid (360 s). Radiolabelling studies ascertained thein vivobiocompatibility (non-invasive distribution, residence, clearance, and stability) of the Tr-AuNPs. The short-term toxicity studies were conducted to establish a proof of concept for the biomedical application of the material. The results highlighted the use of biologically alkyl amine molecules as capping and reducing agents for the synthesis of nanoparticles, which have shown a synergistic effect on the coagulation cascade while holding the potential for also acting as potential theranostic agents.


Subject(s)
Hemostatics , Metal Nanoparticles , Tranexamic Acid , Gold/pharmacology , Gold/chemistry , Tranexamic Acid/pharmacology , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...