Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 174: 113273, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090268

ABSTRACT

The dynamics of the coastal aquifers are well-expressed by geochemical and isotopic signatures. Coastal regions often exhibit complex groundwater recharge pattern due to the influence of depression in the Bay of Bengal, tidal variations on surface waters, saline water intrusion and agricultural return flows. In this research, groundwater recharge processes occurring in coastal Tamil Nadu, South India were evaluated using major ion chemistry and environmental isotopes. A total of 170 groundwater samples were collected from shallow and deep aquifers during both post-monsoon (POM) and pre-monsoon (PRM) seasons. The isotopic results showed a wide variation in the shallow groundwater, suggesting contribution from multiple recharge sources. But, the deeper groundwater recharge is mainly from precipitation. The northern part of the study area showed more depleted isotopic values, which rapidly changed towards south from -6.8 to -4.4‰. Alternatively, central and southern parts exhibited relatively enriched isotopic content with variation from -0.58 to -2.7‰. Groundwater was discerned to be brackish to saline with chloride content, 600-2060 mgL-1 and δ18O ranging from -5.8 to -4.5‰, suggesting influence of the saline water sources. A minor influence of anthropogenic activities was also observed in the deeper groundwater during PRM, which was confirmed by tritium and Cl- trends. The old groundwater with depleted isotopic content infer recharged by distant sources while modern groundwater with enriched isotopes points to the influence of evaporated recharge.


Subject(s)
Anthropogenic Effects , Groundwater , Environmental Monitoring , India , Isotopes/analysis
2.
Ecotoxicol Environ Saf ; 229: 113075, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34923327

ABSTRACT

The present research reports the level of nitrate (NO3-), associated health risks and possible sources of contamination in groundwater from south India. Many samples (32%) are above or approaching the recommended level of NO3- for safe drinking water. The correlation analysis indicates different sources of NO3- contamination in different regions rather than a common origin. The isotopic measurements provide information about potential nitrogen sources contributing NO3- to the groundwater. Based on isotope analysis, the sources of NO3- in the groundwater of this region are likely to be from (a) septic sewage (b) organic nitrogen (animal and livestock excreta) (c) sewage (domestic & chemical fertilizers). Among the sample analyzed sewage, manure and septic sewage contribute 46%, 23% and 31% NO3- to groundwater. The HQ > 1 indicates non-carcinogenic health risk due to consumption of high NO3- in drinking water. Among the studied age groups, infants are exposed to higher risk than children and adults. Results indicate that groundwater of this region is polluted with NO3- due to anthropogenic activities. Continuous consumption of such water may pose serious health risk to the residents.


Subject(s)
Groundwater , Water Pollutants, Chemical , Animals , Anthropogenic Effects , Environmental Monitoring , Humans , Nitrates/analysis , Nitrogen Isotopes/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...