Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2232: 193-208, 2021.
Article in English | MEDLINE | ID: mdl-33161549

ABSTRACT

Studying the plant phyllosphere to understand inhibition patterns to the growth of fungal foliar pathogens by using the Arabidopsis thaliana pathosystem offers unique opportunities for evaluating strategies for plant protection against foliar diseases. The wide array of bacteria inhabiting the phylloplane of plants has been researched to a much lesser extent compared to the bacteria in the rhizosphere. This difference is especially evident as bacteria derived from the aerial section of plants are rarely used in formulations of foliage sprays against pathogens and pests. In this chapter we outline easy and reliable methods for sample preparation to profile phyllosphere bacteria using high throughput amplicon sequencing and isolate/characterize potentially beneficial phyllosphere bacteria from Arabidopsis thaliana that inhibit in vitro the growth of foliar pathogens such as Alternaria brassicicola. The use of the described methods for profiling and screening phyllosphere bacteria may provide tangible progress on the discovery of new potential biological control agents against agriculturally important pathogens.


Subject(s)
Alternaria/pathogenicity , Arabidopsis/microbiology , Plant Diseases/microbiology , Specimen Handling/methods , Arabidopsis/genetics , Bacteria/pathogenicity , Disease Resistance/genetics , Fungi/pathogenicity , Plant Diseases/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Rhizosphere
2.
Plant Sci ; 267: 102-111, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29362088

ABSTRACT

To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops".


Subject(s)
Agriculture/methods , Biological Control Agents , Microbiota , Pest Control, Biological/methods , Plant Diseases/prevention & control , Crops, Agricultural/microbiology , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/microbiology , Plant Roots/microbiology
3.
Front Microbiol ; 8: 2552, 2017.
Article in English | MEDLINE | ID: mdl-29312235

ABSTRACT

One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.

SELECTION OF CITATIONS
SEARCH DETAIL
...