Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961113

ABSTRACT

Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.

2.
Transfusion ; 62(5): 1073-1083, 2022 05.
Article in English | MEDLINE | ID: mdl-35385146

ABSTRACT

BACKGROUND: Plasmodium falciparum is the parasite responsible for most malaria cases globally. The risk of transfusion-transmitted malaria (TTM) is mitigated by donor deferrals and blood screening strategies, which adversely impact blood availability. Previous studies showed robust inactivation of P. falciparum using nucleic acid-targeting pathogen reduction technologies (PRT) for the treatment of plasma and platelet components or whole blood (WB). The efficacy of the amustaline-glutathione (GSH) PRT to inactivate P. falciparum is here evaluated in red blood cells (RBC), as well the impact of PRT on parasite loads, stages, and strains. STUDY DESIGN AND METHODS: RBC units resuspended in AS-1 or AS-5 additive solutions were spiked with ring stage-infected RBC and treated with the amustaline-GSH PRT. Parasite loads and viability were measured in samples at the time of contamination, and after treatment, using serial 10-fold dilutions of the samples in RBC cultures maintained for up to 4 weeks. RESULTS: P. falciparum viability assays allow for the detection of very low levels of parasite. Initial parasite titer was >5.2 log10 /ml in AS-1/5 RBC. No infectious parasites were detected in amustaline-GSH-treated samples after 4 weeks of culture. Amustaline-GSH inactivated high parasite loads regardless of parasite stages and strains. Amustaline readily penetrates the parasite, irreversibly blocks development, and leads to parasite death and expulsion from RBC. DISCUSSION: Amustaline-GSH PRT demonstrated robust efficacy to inactivate malaria parasites in RBC concentrates. This study completes the portfolio of studies demonstrating the efficacy of nucleic acid-targeting PRTs to mitigate TTM risks as previously reported for platelet concentrates, plasma, and WB.


Subject(s)
Malaria, Falciparum , Nucleic Acids , Acridines , Erythrocytes/metabolism , Glutathione/metabolism , Humans , Malaria, Falciparum/prevention & control , Nitrogen Mustard Compounds , Nucleic Acids/metabolism , Plasmodium falciparum , Virus Inactivation
3.
mBio ; 10(4)2019 08 13.
Article in English | MEDLINE | ID: mdl-31409681

ABSTRACT

Complex human-pathogenic retroviruses cause high morbidity and mortality worldwide, but resist antiviral drugs and vaccine development due to evasion of the immune response. A complex retrovirus, mouse mammary tumor virus (MMTV), requires replication in B and T lymphocytes for mammary gland transmission and is antagonized by the innate immune restriction factor murine Apobec3 (mA3). To determine whether the regulatory/accessory protein Rem affects innate responses to MMTV, a splice-donor mutant (MMTV-SD) lacking Rem expression was injected into BALB/c mice. Mammary tumors induced by MMTV-SD had a lower proviral load, lower incidence, and longer latency than mammary tumors induced by wild-type MMTV (MMTV-WT). MMTV-SD proviruses had many G-to-A mutations on the proviral plus strand, but also C-to-T transitions within WRC motifs. Similarly, a lymphomagenic MMTV variant lacking Rem expression showed decreased proviral loads and increased WRC motif mutations relative to those in wild-type-virus-induced tumors, consistent with activation-induced cytidine deaminase (AID) mutagenesis in lymphoid cells. These mutations are typical of the Apobec family member AID, a B-cell-specific mutagenic protein involved in antibody variable region hypermutation. In contrast, mutations in WRC motifs and proviral loads were similar in MMTV-WT and MMTV-SD proviruses from tumors in AID-insufficient mice. AID was not packaged in MMTV virions. Rem coexpression in transfection experiments led to AID proteasomal degradation. Our data suggest that rem specifies a human-pathogenic immunodeficiency virus type 1 (HIV-1) Vif-like protein that inhibits AID and antagonizes innate immunity during MMTV replication in lymphocytes.IMPORTANCE Complex retroviruses, such as human-pathogenic immunodeficiency virus type 1 (HIV-1), cause many human deaths. These retroviruses produce lifelong infections through viral proteins that interfere with host immunity. The complex retrovirus mouse mammary tumor virus (MMTV) allows for studies of host-pathogen interactions not possible in humans. A mutation preventing expression of the MMTV Rem protein in two different MMTV strains decreased proviral loads in tumors and increased viral genome mutations typical of an evolutionarily ancient enzyme, AID. Although the presence of AID generally improves antibody-based immunity, it may contribute to human cancer progression. We observed that coexpression of MMTV Rem and AID led to AID destruction. Our results suggest that Rem is the first known protein inhibitor of AID and that further experiments could lead to new disease treatments.


Subject(s)
Cytidine Deaminase/antagonists & inhibitors , Mammary Tumor Virus, Mouse/genetics , Proviruses/genetics , Viral Regulatory and Accessory Proteins/genetics , Animals , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Female , Immunity, Innate , Male , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/virology , Mammary Tumor Virus, Mouse/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Proviruses/physiology , Retroviridae Infections/immunology , Retroviridae Infections/virology , Tumor Virus Infections/immunology , Tumor Virus Infections/virology , Viral Load/genetics , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication
4.
Proc Natl Acad Sci U S A ; 112(11): 3505-10, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25737543

ABSTRACT

Retroviruses cause immunodeficiency and cancer but also are used as vectors for the expression of heterologous genes. Nevertheless, optimal translation of introduced genes often is not achieved. Here we show that transfection into mammalian cells of lentiviral or gammaretroviral vectors, including those with specific shRNAs, increased expression of a cotransfected gene relative to standard plasmid vectors. Levels of most endogenous cellular proteins were unchanged. Transfer of lentiviral vector sequences into a standard plasmid conferred the ability to give increased expression of cotransfected genes (superinduction). Superinduction by the retroviral vector was not dependent on the cell type or species, the type of reporter gene, or the method of transfection. No differences were detected in the IFN, unfolded protein, or stress responses in the presence of retroviral vectors. RT-PCRs revealed that RNA levels of cotransfected genes were unchanged during superinduction, yet Western blotting, pulse labeling, and the use of bicistronic vectors showed increased cap-dependent translation of cointroduced genes. Expression of the mammalian target of rapamycin (mTOR) kinase target 4E-BP1, but not the mTOR inhibitor Torin 1, preferentially inhibited superinduction relative to basal protein expression. Furthermore, transcription of lentiviral vector sequences from a doxycycline-inducible promoter eliminated superinduction, consistent with a DNA-triggered event. Thus, retroviral DNA increased translation of cointroduced genes in trans by an mTOR-independent signaling mechanism. Our experiments have broad applications for the design of retroviral vectors for transfections, DNA vaccines, and gene therapy.


Subject(s)
Genetic Vectors/metabolism , Lentivirus/metabolism , Protein Biosynthesis , RNA Caps/metabolism , DNA/metabolism , Eukaryotic Initiation Factor-4E/biosynthesis , Gene Expression , Interferons/metabolism , RNA, Small Interfering/metabolism , Stress, Physiological , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...