Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(1): e0208356, 2019.
Article in English | MEDLINE | ID: mdl-30641545

ABSTRACT

Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors under evaluation as vaccine antigens. Clinical S. aureus isolates have the biosynthetic capability to express either CP5 or CP8 and an understanding of the relationship between CP genotype/phenotype and S. aureus epidemiology is valuable. Using whole genome sequencing, the clonal relatedness and CP genotype were evaluated for disease-associated S. aureus isolates selected from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T) to represent different geographic regions in the United States (US) during 2004 and 2009-10. Thirteen prominent clonal complexes (CC) were identified, with CC5, 8, 30 and 45 representing >80% of disease isolates. CC5 and CC8 isolates were CP type 5 and, CC30 and CC45 isolates were CP type 8. Representative isolates from prevalent CC were susceptible to in vitro opsonophagocytic killing elicited by anti-CP antibodies, demonstrating that susceptibility to opsonic killing is not linked to the genetic lineage. However, as not all S. aureus isolates may express CP, isolates representing the diversity of disease isolates were assessed for CP production. While approximately 35% of isolates (primarily CC8) did not express CP in vitro, CP expression could be clearly demonstrated in vivo for 77% of a subset of these isolates (n = 20) despite the presence of mutations within the capsule operon. CP expression in vivo was also confirmed indirectly by measuring an increase in CP specific antibodies in mice infected with CP5 or CP8 isolates. Detection of antigen expression in vivo in relevant disease states is important to support the inclusion of these antigens in vaccines. Our findings confirm the validity of CP as vaccine targets and the potential of CP-based vaccines to contribute to S. aureus disease prevention.


Subject(s)
Bacterial Capsules/metabolism , Molecular Epidemiology , Polysaccharides, Bacterial/metabolism , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/metabolism , Animals , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Capsules/genetics , Biosynthetic Pathways/genetics , Disease Models, Animal , Female , Humans , INDEL Mutation/genetics , Immune Sera/metabolism , Male , Mice , Middle Aged , Operon/genetics , Opsonin Proteins/metabolism , Phagocytosis , Polymorphism, Single Nucleotide/genetics , Polysaccharides, Bacterial/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , United States/epidemiology
3.
J Med Chem ; 49(20): 6027-36, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004716

ABSTRACT

A series of pyrazolidine-3,5-dione and 5-hydroxy-1H-pyrazol-3(2H)-one inhibitors of Escherichia coli UDP-N-acetylenolpyruvyl glucosamine reductase (MurB) has been prepared. The 5-hydroxy-1H-pyrazol-3(2H)-ones show low micromolar IC(50) values versus E. coli MurB and submicromolar minimal inhibitory concentrations (MIC) against Staphylococcus aureus GC 1131, Enterococcus faecalis GC 2242, Streptococcus pneumoniae GC 1894, and E. coli GC 4560 imp, a strain with increased outer membrane permeability. None of these compounds show antimicrobial activity against Candida albicans, a marker of eukaryotic toxicity. Moreover, these compounds inhibit peptidoglycan biosynthesis, as assessed by measuring the amount of soluble peptidoglycan produced by Streptococcus epidermidis upon incubation with compounds. A partial least squares projection to latent structures analysis shows that improving MurB potency and MIC values correlate with increasing lipophilicity of the C-4 substituent of the 5-hydroxy-1H-pyrazol-3(2H)-one core. Docking studies using FLO and PharmDock produced several binding orientations for these molecules in the MurB active site.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Carbohydrate Dehydrogenases/antagonists & inhibitors , Pyrazoles/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Microbial Sensitivity Tests , Models, Molecular , Peptidoglycan/biosynthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Streptococcus/drug effects , Streptococcus/metabolism , Structure-Activity Relationship
4.
Antimicrob Agents Chemother ; 50(2): 556-64, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16436710

ABSTRACT

A series of 3,5-dioxopyrazolidines was identified as novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Compounds 1 to 3, which are 1,2-bis(4-chlorophenyl)-3,5-dioxopyrazolidine-4-carboxamides, inhibited Escherichia coli MurB, Staphyloccocus aureus MurB, and E. coli MurA with 50% inhibitory concentrations (IC50s) in the range of 4.1 to 6.8 microM, 4.3 to 10.3 microM, and 6.8 to 29.4 microM, respectively. Compound 4, a C-4-unsubstituted 1,2-bis(3,4-dichlorophenyl)-3,5-dioxopyrazolidine, showed moderate inhibitory activity against E. coli MurB, S. aureus MurB, and E. coli MurC (IC50s, 24.5 to 35 microM). A fluorescence-binding assay indicated tight binding of compound 3 with E. coli MurB, giving a dissociation constant of 260 nM. Structural characterization of E. coli MurB was undertaken, and the crystal structure of a complex with compound 4 was obtained at 2.4 A resolution. The crystal structure indicated the binding of a compound at the active site of MurB and specific interactions with active-site residues and the bound flavin adenine dinucleotide cofactor. Peptidoglycan biosynthesis studies using a strain of Staphylococcus epidermidis revealed reduced peptidoglycan biosynthesis upon incubation with 3,5-dioxopyrazolidines, with IC50s of 0.39 to 11.1 microM. Antibacterial activity was observed for compounds 1 to 3 (MICs, 0.25 to 16 microg/ml) and 4 (MICs, 4 to 8 microg/ml) against gram-positive bacteria including methicillin-resistant S. aureus, vancomycin-resistant Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbohydrate Dehydrogenases/antagonists & inhibitors , Gram-Positive Bacteria/drug effects , Pyrazoles/pharmacology , Carbohydrate Dehydrogenases/chemistry , Carbohydrate Dehydrogenases/metabolism , Crystallography , Fluorescence , Microbial Sensitivity Tests , Peptidoglycan/biosynthesis , Protein Binding
5.
Bioorg Med Chem Lett ; 16(1): 176-80, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16216496

ABSTRACT

Pulvinones were synthesized (>180) in arrays and evaluated as inhibitors of early stage cell wall biosynthesis enzymes MurA-MurD. Several pulvinones inhibited Mur enzymes with IC(50)'s in the 1-10 microg/mL range and demonstrated antibacterial activity against Gram-positive bacteria including methicillin-resistant Staphyloccus aureus, vancomycin-resistant Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae.


Subject(s)
Carboxylic Acids/chemical synthesis , Lactones/chemical synthesis , Streptococcus pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Drug Resistance, Bacterial , Enterococcus faecalis/metabolism , Inhibitory Concentration 50 , Methicillin/pharmacology , Microbial Sensitivity Tests , Models, Chemical , Penicillins/pharmacology , Staphylococcus aureus/metabolism , Vancomycin/pharmacology
6.
Antimicrob Agents Chemother ; 49(11): 4521-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16251291

ABSTRACT

A retrospective study was performed to identify methicillin-resistant Staphylococcus aureus (MRSA) isolates obtained from patients enrolled in phase 3 clinical trials for tigecycline that were genotypically similar to known community-associated MRSA (CA-MRSA) strains. The clinical trials were double-blind comparator studies for complicated skin and skin structure infections or complicated intra-abdominal infections. We obtained 85% of the MRSA isolates from patients with complicated skin and skin structure infections. Using ribotyping, MRSA isolates were compared with well-characterized North American CA-MRSA strains and negative-control hospital-associated (HA) MRSA strains by cluster analysis; 91 of the 173 isolates clustered with two groups of known CA-MRSA strains, 60% of which shared an indistinguishable ribotype. These isolates were subsequently tested for the presence of SCCmec type IV and the Panton-Valentine leukocidin (PVL)-encoding genes as well as susceptibility to clindamycin, characteristics that are typically associated with CA-MRSA; 89 of the 91 isolates carried the type IV SCCmec element and 76 were also positive for the PVL-encoding genes; 73 of these isolates were susceptible to clindamycin. A similar analysis performed on 26 nonclustering isolates identified only four with these characteristics; 89 of the 91 clustering isolates were inhibited by tigecycline at MICs of < or = 0.5 microg/ml. On the basis of clustering information and preliminary genetic characterization, it appears that ribotyping is a useful tool in identifying potential CA-MRSA isolates and 76 MRSA isolates from patients enrolled in the tigecycline phase 3 trials have genetic markers typically associated with CA-MRSA.


Subject(s)
Community-Acquired Infections/microbiology , Methicillin Resistance , Minocycline/analogs & derivatives , Ribotyping , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Cluster Analysis , Community-Acquired Infections/drug therapy , Humans , Microbial Sensitivity Tests , Minocycline/pharmacology , Retrospective Studies , Tigecycline
7.
Bioorg Med Chem Lett ; 15(10): 2527-31, 2005 May 16.
Article in English | MEDLINE | ID: mdl-15863310

ABSTRACT

Over 195 4-alkyl and 4,4-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives were synthesized, utilizing microwave accelerated synthesis, for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good activity against MurB in vitro and low MIC values against gram-positive bacteria, particularly penicillin-resistant Streptococcus pneumoniae (PRSP). Derivative 7l demonstrated antibacterial activity against both gram-positive and gram-negative bacteria. Derivatives 7f and 10a also demonstrated potent nanomolar Kd values in their binding to MurB.


Subject(s)
Cell Wall/drug effects , Gram-Positive Bacteria/drug effects , Pyrazoles/pharmacology , Cell Wall/metabolism , Gram-Positive Bacteria/metabolism , Molecular Structure
8.
Antimicrob Agents Chemother ; 48(3): 728-38, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14982757

ABSTRACT

The naturally occurring mannopeptimycins (formerly AC98-1 through AC98-5) are a novel class of glycopeptide antibiotics that are active against a wide variety of gram-positive bacteria. The structures of the mannopeptimycins suggested that they might act by targeting cell wall biosynthesis, similar to other known glycopeptide antibiotics; but the fact that the mannopeptimycins retain activity against vancomycin-resistant organisms suggested that they might have a unique mode of action. By using a radioactive mannopeptimycin derivative bearing a photoactivation ligand, it was shown that mannopeptimycins interact with the membrane-bound cell wall precursor lipid II [C(55)-MurNAc-(peptide)-GlcNAc] and that this interaction is different from the binding of other lipid II-binding antibiotics such as vancomycin and mersacidin. The antimicrobial activities of several mannopeptimycin derivatives correlated with their affinities toward lipid II, suggesting that the inhibition of cell wall biosynthesis was primarily through lipid II binding. In addition, it was shown that mannopeptimycins bind to lipoteichoic acid in a rather nonspecific interaction, which might facilitate the accumulation of antibiotic on the bacterial cell surface.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Vancomycin Resistance , Affinity Labels , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins , Bacterial Proteins/metabolism , Binding, Competitive/drug effects , Carrier Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Chromatography, Thin Layer , Culture Media , Escherichia coli/drug effects , Escherichia coli Proteins , Glycopeptides , Gram-Positive Bacteria/metabolism , Hexosyltransferases/metabolism , Muramoylpentapeptide Carboxypeptidase/metabolism , Penicillin-Binding Proteins , Peptidoglycan/biosynthesis , Peptidyl Transferases/metabolism , Protein Binding , Receptors, Virus , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
9.
Bioorg Med Chem Lett ; 14(1): 235-8, 2004 Jan 05.
Article in English | MEDLINE | ID: mdl-14684334

ABSTRACT

Over 50 phenyl thiazolyl urea and carbamate derivatives were synthesized for evaluation as new inhibitors of bacterial cell-wall biosynthesis. Many of them demonstrated good activity against MurA and MurB and gram-positive bacteria including MRSA, VRE and PRSP. 3,4-Difluorophenyl 5-cyanothiazolylurea (3p) with clog P of 2.64 demonstrated antibacterial activity against both gram-positive and gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Peptidoglycan/biosynthesis , Phenylthiazolylthiourea/analogs & derivatives , Phenylthiazolylthiourea/pharmacology , Cell Wall/drug effects , Cell Wall/enzymology , Enterococcus faecalis/drug effects , Enterococcus faecalis/enzymology , Escherichia coli/drug effects , Escherichia coli/enzymology , Microbial Sensitivity Tests , Staphylococcus/drug effects , Staphylococcus/enzymology
10.
Bioorg Med Chem Lett ; 13(19): 3345-50, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951123

ABSTRACT

A series of Muraymycin analogues was synthesized. These analogues showed excellent antimicrobial activity against gram-positive organisms. These analogues also showed excellent inhibitory activity against the target peptidoglycan biosynthesis enzyme MraY, the cell membrane associated transglycosylase responsible for the formation of Lipid II.


Subject(s)
Peptidoglycan/analogs & derivatives , Peptidoglycan/biosynthesis , Peptidoglycan/chemistry , Peptidoglycan/pharmacology , Microbial Sensitivity Tests , Nucleotides , Peptides , Structure-Activity Relationship , Urea
11.
Bioorg Med Chem Lett ; 13(15): 2591-4, 2003 Aug 04.
Article in English | MEDLINE | ID: mdl-12852973

ABSTRACT

Twenty-five 2-phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives were synthesized for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good inhibitory activity against Staphylococcus aureus MurB, MurC and MurD enzymes in vitro and antimicrobial activity against gram-positive bacteria including MRSA, VRE and PRSP. However, when they were tested in the presence of 4% bovine serum albumin, the MIC values increased to greater than 128 microg/mL against PRSP. None of the compounds demonstrated activity against gram-negative bacteria at MIC <32 microg/mL.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Cell Wall/metabolism , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Cell Wall/drug effects , Drug Resistance, Bacterial , Genes, Bacterial/genetics , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology
12.
J Am Chem Soc ; 124(35): 10260-1, 2002 Sep 04.
Article in English | MEDLINE | ID: mdl-12197711

ABSTRACT

The muraymycins, a family of nucleoside-lipopeptide antibiotics, were purified from the extract of Streptomyces sp. LL-AA896. The antibiotics were purified by chromatographic methods and characterized by NMR spectroscopy, degradation studies, and mass spectrometry. The structures of 19 compounds were established. The muraymycins constitute a new antibiotic family whose core structure contains a glycosylated uronic acid derivative joined by an aminopropane group to a hexahydro-2-imino-4-pyrimidylglycyl residue (epicapreomycidine) containing dipeptide that is further extended by a urea-valine moiety. Members of this family show broad-spectrum in vitro antimicrobial activity against a variety of clinical isolates (MIC 2 to >64 mug/mL). The muraymycins inhibited peptidoglycan biosynthesis. The fatty acid substituent and the presence or absence of the amino sugar play important roles in biological activity. One of the most active compounds, muraymycin A1, demonstrated protection in vivo against Staphylococcus aureus infection in mice (ED50 1.1 mg/kg).


Subject(s)
Anti-Bacterial Agents/chemistry , Peptidoglycan/biosynthesis , Uracil/analogs & derivatives , Urea/analogs & derivatives , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Streptomyces/chemistry , Structure-Activity Relationship , Uracil/chemistry , Uracil/isolation & purification , Uracil/pharmacology , Urea/chemistry , Urea/isolation & purification , Urea/pharmacology
14.
J Bacteriol ; 184(8): 2141-7, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11914345

ABSTRACT

Previous studies suggested that a Gly-containing branch of cell wall precursor [C(55)-MurNAc-(peptide)-GlcNAc], which is often referred to as lipid II, might serve as a nucleophilic acceptor in sortase-catalyzed anchoring of surface proteins in Staphylococcus aureus. To test this hypothesis, we first simplified the procedure for in vitro biosynthesis of Gly-containing lipid II by using branched UDP-MurNAc-hexapeptide isolated from the cytoplasm of Streptomyces spp. Second, we designed a thin-layer chromatography-based assay in which the mobility of branched but not linear lipid II is shifted in the presence of both sortase and LPSTG-containing peptide. These results and those of additional experiments presented in this study further suggest that lipid II indeed serves as a natural substrate in a sorting reaction.


Subject(s)
Aminoacyltransferases/physiology , Cell Wall/metabolism , Peptidoglycan/biosynthesis , Streptomyces/metabolism , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Bacterial Proteins , Cysteine Endopeptidases , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...