Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 898: 165415, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37459996

ABSTRACT

A year-long study (January-December 2019) on the chemical characterization and meteorological impact on PM2.5 was conducted over a semi-urban station, Shyamnagar, in the easternmost part of the Indo-Gangetic Plains (IGP). PM2.5 concentrations (Mean = 81.69 ± 66.27 µgm-3; 7.10-272.74 µgm-3), the total carbonaceous aerosols (TCA) (Mean = 22.85 ± 24.95 µgm-3; 0.77-102.97 µgm-3) along with differential carbonaceous components like organic carbon (OC) (Mean = 11.28 ± 12.48 µgm-3; 0.48-53.01 µgm-3) and elemental carbon (EC) (Mean = 4.83 ± 5.28 µgm-3; 0.1-22.13 µgm-3) exhibited prominent seasonal variability with the highest concentrations during winter, followed by post-monsoon, pre-monsoon and lowest during monsoon. A similar seasonal variation was observed for the total water-soluble ionic species (Mean = 31.91 ± 20.12 µgm-3; 0.1-126.73 µgm-3). We observed that under the least favorable conditions (low ventilation coefficient), high PM2.5 pollution (exceeding Indian standard) was associated with a high increase in secondary components of PM2.5. Eastern, central and western parts of IGP, as well as Nepal, were the major long-distant source regions whereas the northern part of West Bengal and parts of Bangladesh were the major regional source region for high PM2.5 pollution over Shyamnagar. The ratios like char-EC/soot-EC, non-sea-K+/EC and non-sea-SO42-/EC strongly indicated the dominance of fossil fuel burning over biomass burning. Compared with other studies, we observed that the PM2.5 pollution over this semi-urban region was comparable (and even higher in some cases) with other parts of IGP. The high exceedance of PM2.5 over the Indian standard in Shyamnagar strongly demands an immediate initiation of systematic and regular based air pollution monitoring over semi-urban/non-urban regions in India, especially IGP, in addition to the polluted cities.

2.
Chemosphere ; 326: 138422, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36925018

ABSTRACT

This study reports the chemical characterization of the carbonaceous component of PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) collected over a year-long campaign from a regional site in Shyamnagar, West Bengal, in the Indo-Gangetic Plains (IGP), India. The carbonaceous fractions (elemental and organic carbon), mass concentrations, and stable carbon isotopic composition (δ13C value) of aerosols were measured and utilized to characterize the sources and understand the atmospheric processing of aerosols. Cluster analysis, Potential Source Contribution Function (PSCF) modeling, and fire count data were analyzed to decipher the pattern of air masses, source contributions, and extent of burning activities. The PM2.5 mass concentrations were significantly higher during winter (168.3 ± 56.3 µg m-3) and post-monsoon (109.8 ± 59.1 µg m-3) compared to the monsoon (29.8 ± 10.7 µg m-3) and pre-monsoon (55.1 ± 23.0 µg m-3). Organic carbon (OC), elemental carbon (EC), and total carbon (TC) concentrations were also several factors higher during winter and post-monsoon compared to monsoon and pre-monsoon. The winter and post-monsoon experienced the impact of air masses from upwind IGP. On the other hand, long-range transported air masses from the South-West direction dominated during monsoon and pre-monsoon, which are also relatively cleaner periods. The average δ13C during post-monsoon and winter was ∼1‰ higher compared to monsoon and pre-monsoon. The vehicular exhaust and biomass/biofuel burning contributed dominantly in winter and post-monsoon. In comparison, lower δ13C in pre-monsoon and monsoon might be attributed to the dominance of biomass/biofuel combustion. Photochemical-induced aging of the anthropogenic aerosols resulted in a higher δ13C of TC in winter and post-monsoon, whereas the mixing of different local sources in pre-monsoon and monsoon resulted in lower δ13C values. These findings benefit policymakers in strategizing proper and effective management of biomass/biofuel burning in the IGP to minimize air pollution.


Subject(s)
Air Pollutants , Carbon , Carbon/analysis , Air Pollutants/analysis , Biofuels/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Seasons , Aerosols/analysis , India
3.
Environ Pollut ; 314: 120228, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36162556

ABSTRACT

PM2.5 (particulate matter having aerodynamic diameter ≤2.5 µm) samples were collected during wintertime from two polluted urban sites (Allahabad and Kanpur) in the central Indo-Gangetic Plain (IGP) to comprehend the sources and atmospheric transformations of light-absorbing water-soluble organic aerosol (WSOA). The aqueous extract of each filter was atomized and analyzed in a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Water-soluble organic carbon (WSOC) and WSOA concentrations at Kanpur were ∼1.2 and ∼1.5 times higher than that at Allahabad. The fractions of WSOC and secondary organic carbon (SOC) to total organic carbon (OC) were also significantly higher ∼53% and 38%, respectively at Kanpur compared to Allahabad. This indicates a higher abundance of oxidized WSOA at Kanpur. The absorption coefficient (babs-365) of light-absorbing WSOA measured at 365 nm was 46.5 ± 15.5 Mm-1 and 73.2 ± 21.6 Mm-1 in Allahabad and Kanpur, respectively, indicating the dominance of more light-absorbing fractions in WSOC at Kanpur. The absorption properties such as mass absorption efficiency (MAE365) and imaginary component of refractive index (kabs-365) at 365 nm at Kanpur were also comparatively higher than Allahabad. The absorption forcing efficiency (Abs SFE; indicates warming effect) of WSOA at Kanpur was ∼1.4 times higher than Allahabad. Enhancement in light absorption capacity was observed with the increase in f44/f43 (fraction of m/z 44 (f44) to 43 (f43) in organic mass spectra) and O/C (oxygen to carbon) ratio of WSOA at Kanpur while no such trend was observed for the Allahabad site. Moreover, the correlation between carbon fractions and light absorption properties suggested the influence of low-volatile organic compounds (OC3 + OC4 fraction obtained from thermal/optical carbon analyzer) in increasing the light absorption capacity of WSOA in Kanpur.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Water , Environmental Monitoring , Aerosols/analysis , Particulate Matter/analysis , Carbon/analysis , Oxygen
4.
Environ Res ; 214(Pt 1): 113801, 2022 11.
Article in English | MEDLINE | ID: mdl-35787367

ABSTRACT

A year-long sampling campaign of ambient PM2.5 (particulate matter with aerodynamic diameter ≤2.5 mm) at a regional station in the North-Eastern Region (NER) of India was performed to understand the sources and formation of carbonaceous aerosols. Mass concentration, carbon fractions (organic and elemental carbon), and stable carbon isotope ratio (δ13C) of PM2.5 were measured and studied along with cluster analysis and Potential Source Contribution Function (PSCF) modelling. PM2.5 mass concentration was observed to be highest during winter and post-monsoon seasons when the meteorological conditions were relatively stable compared to other seasons. Organic carbon (OC) concentration was more than two times higher in the post-monsoon and winter seasons than in the pre-monsoon and monsoon seasons. Air mass back trajectory cluster analysis showed the dominance of local and regional air masses during winter and post-monsoon periods. In contrast, long-range transported air masses influenced the background site in pre-monsoon and monsoon. Air mass data and PSCF analysis indicated that aerosols during winter and post-monsoon are dominated by freshly generated emissions from local sources along with the influence from regional transport of polluted aerosols. On the contrary, the long-range transported air masses containing aged aerosols were dominant during pre-monsoon. No significant variability was observed in the range of δ13C values (-28.2‰ to -26.4‰) during the sampled seasons. The δ13C of aerosols indicates major sources to be combustion of biomass/biofuels (C3 plant origin), biogenic aerosols, and secondary aerosols. The δ13C variability and cluster/PSCF modelling suggest that aged aerosols (along with enhanced photo-oxidation derived secondary aerosols) influenced the final δ13C during the pre-monsoon. On the other hand, lower δ13C in winter and post-monsoon is attributed to the freshly emitted aerosols from biomass/biofuels.


Subject(s)
Air Pollutants , Aerosols , Biofuels , Carbon , Environmental Monitoring , India , Particulate Matter , Seasons
5.
Environ Pollut ; 270: 116082, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33272802

ABSTRACT

Post-harvest crop residue burning is extensively practiced in North India, which results in enhanced particulate matter (PM) concentrations. This study explores the PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) emissions during various time periods (pre-monsoon, monsoon, and post-monsoon) over the biomass burning source region in Beas, Punjab. The PM2.5 concentrations during the pre-monsoon period (106-458 µg m-3) and the post-monsoon period (184-342 µg m-3) were similar but much higher than concentrations during the monsoon season (23-95 µg m-3) due to enhanced wet deposition. However, the carbonaceous aerosol fraction in PM2.5 was nearly double in the post-monsoon season (∼27%) than the pre-monsoon period (∼15%). A higher contribution of secondary organic carbon (SOC) observed during the pre-monsoon season can be attributed to enhanced photochemical activity in dry conditions. Stable carbon isotope ratio (δ13C value) of ambient PM allowed elucidation of contributing sources. δ13CTC correlation with SOC during post-monsoon and pre-monsoon periods suggests significant influence of secondary formation processes during both time periods. The concentrations of carbon fractions in sampled sources and aerosols suggests contribution of biofuels, resulting in enhanced PM concentration at this location. δ13CTC values of pre- and post-monsoon samples show dominance of freshly emitted aerosols from local sources. Impact of biomass and biofuel combustion was also confirmed by biomass burning K+BB tracer, indicating that major agriculture residue burning occurred primarily during nighttime. C3 plant derived aerosols dominated at the sampling location during the entire sampling duration and contributed significantly during the pre-monsoon season. Whereas, both fossil fuel and C3 plant combustion contributed to the total mass of carbonaceous aerosols during the post-monsoon and monsoon seasons.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Biomass , Carbon/analysis , Environmental Monitoring , India , Particulate Matter/analysis , Seasons
6.
Sci Total Environ ; 763: 143032, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33131840

ABSTRACT

Measurements of water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), water-soluble organic nitrogen (WSON) and ẟ15NTN (total N) was carried out on PM2.5 aerosol samples during wintertime to understand the major sources of ambient nitrogenous species at a heavily polluted location of Kanpur in north India. During the nighttime sampling campaign, WSON and NH4+_N contributed dominantly to the WSTN. Ammonium-rich condition persisted during sampling (NH4+/SO42- average equivalent mass ratio = 3.1 ± 0.7), suggesting complete neutralization of SO42- and formation of NH4NO3, which is stable in winter due to low temperature and high relative humidity (RH). Stagnant atmospheric conditions during wintertime enhanced concentrations of ionic species (SO42-, NH4+, and NO3-) at this location. Good correlations between NO3-_N, NH4+_N and biomass burning tracer K+BB (and also between NO3-_N, NH4+_N and SO42-) suggests a strong impact of biomass burning activities. Multi-linear regression (MLR) analysis shows a strong dependence of ẟ15N on NO3-_N, SO42- and WSON in night-1 (10:00 pm to 2:00 am) and on NO3-_N and SO42- in night-2 (2:00 am to 6:00 am) depicting different formation and removal mechanism of aerosols during both the time-periods. ẟ15NTN in PM2.5 varied from +8.8 to +15.5‰ (10.8 ± 1.3), similar to the variability observed for many urban locations in India and elsewhere. NH4+_N and WSON control the final ẟ15N value of nitrogenous aerosols. High relative humidity during nighttime enhanced the secondary organic aerosols formation due to aqueous-phase formation and gas to particle-phase partitioning. Isotopic fractionations associated with multi-phase reactions during gas to particle conversion of NH3 would result in an increase in ẟ15N by ~48‰ to 51‰ (at T of 5.4 °C to 15.4 °C) than that of the emission source(s), which indicates the most likely N-emission sources at Kanpur to be from agriculture activities and waste generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...