Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824855

ABSTRACT

Rationale: Rare genetic variants and genetic variation at loci in an enhancer in SRY-Box Transcription Factor 17 (SOX17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutation in SOX17 in PAH pathogenesis has not been reported. Objectives: To investigate the role of SOX17 deficiency in pulmonary hypertension (PH) development. Methods: Human lung tissue and endothelial cells (ECs) from IPAH patients were used to determine the expression of SOX17. Tie2Cre-mediated and EC-specific deletion of Sox17 mice were assessed for PH development. Single-cell RNA sequencing analysis, human lung ECs, and smooth muscle cell culture were performed to determine the role and mechanisms of SOX17 deficiency. A pharmacological approach was used in Sox17 deficiency mice for therapeutic implication. Measurement and Main Results: SOX17 expression was downregulated in the lungs and pulmonary ECs of IPAH patients. Mice with Tie2Cre mediated Sox17 knockdown and EC-specific Sox17 deletion developed spontaneously mild PH. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced PH in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and anti-apoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP signaling. E2F Transcription Factor 1 (E2F1) signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction and PH development. Conclusions: Our study demonstrated that endothelial SOX17 deficiency induces PH through E2F1 and targeting E2F1 signaling represents a promising approach in PAH patients.

2.
Am J Transl Res ; 14(3): 1628-1639, 2022.
Article in English | MEDLINE | ID: mdl-35422946

ABSTRACT

OBJECTIVES: Bioenergetic measurements in peripheral blood mononuclear cells (PBMCs) using high-throughput respirometry is a promising minimally invasive approach to studying mitochondrial function in humans. However, optimal methods for collecting PBMCs are not well studied. METHODS: Bioenergetics and viability were measured across processing delays, tube type and cryopreservation. RESULTS: Storage of collection tubes on dry ice resulted in unrecoverable samples and using the Cell Preparation Tube (CPTTM) significantly reduced viability. Thus, storage in Sodium Citrate (NaC) and ethylenediaminetetraacetic acid (EDTA) tubes were studied in detail. Cell viability decreased by 0.5% for each hour the samples remained on wet ice prior to processing while cryopreservation decreased viability by 9.6% with viability remaining stable for about one month in liquid nitrogen. Adenosine triphosphate linked respiration (ALR) and proton-leak respiration (PLR) changed minimally while maximal respiratory capacity (MRC) and reserve capacity (RC) decreased markedly with collection tubes stored on wet ice over 24 hrs. Changes in respiratory parameters were more modest over the first 8 hours. Manipulations to replace media did not attenuate changes in respiratory parameters. Cryopreservation decreased ALR, MRC and RC by 17.20, 95.30 and 54.92 pmol/min, respectively and increased PLR by 2.65 pmol/min. PLR, MRC and RC changed moderately during the first month in liquid nitrogen for freshly frozen PBMCs. CONCLUSIONS: Our results suggest that bioenergetics in PBMCs vary based on the processing time from specimen collection and preservation method. Changes in bioenergetics can be minimized by processing samples with a minimal time delay. Changes in viability are minimal and may not correspond to changes in bioenergetics.

3.
Transl Psychiatry ; 11(1): 527, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645790

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is associated with unique changes in mitochondrial metabolism, including elevated respiration rates and morphological alterations. We examined electron transport chain (ETC) complex activity in fibroblasts derived from 18 children with ASD as well as mitochondrial morphology measurements in fibroblasts derived from the ASD participants and four typically developing controls. In ASD participants, symptoms severity was measured by the Social Responsiveness Scale and Aberrant Behavior Checklist. Mixed-model regression demonstrated that alterations in mitochondrial morphology were associated with both ETC Complex I+III and IV activity as well as the difference between ETC Complex I+III and IV activity. The subgroup of ASD participants with relative elevation in Complex IV activity demonstrated more typical mitochondrial morphology and milder ASD related symptoms. This study is limited by sample size given the invasive nature of obtaining fibroblasts from children. Furthermore, since mitochondrial function is heterogenous across tissues, the result may be specific to fibroblast respiration. Previous studies have separately described elevated ETC Complex IV activity and changes in mitochondrial morphology in cells derived from children with ASD but this is the first study to link these two findings in mitochondrial metabolism. The association between a difference in ETC complex I+III and IV activity and normal morphology suggests that mitochondrial in individuals with ASD may require ETC uncoupling to function optimally. Further studies should assess the molecular mechanisms behind these unique metabolic changes.Trial registration: Protocols used in this study were registered in clinicaltrials.gov as NCT02000284 and NCT02003170.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/metabolism , Electron Transport , Electron Transport Complex I , Humans , Mitochondria/metabolism , Oxidation-Reduction
4.
J Pers Med ; 11(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199819

ABSTRACT

Patients with autism spectrum disorder (ASD) may have an increase in blood acyl-carnitine (AC) concentrations indicating a mitochondrial fatty acid ß-oxidation (mtFAO) impairment. However, there are no data on systematic mtFAO analyses in ASD. We analyzed tritiated palmitate oxidation rates in fibroblasts from patients with ASD before and after resveratrol (RSV) treatment, according to methods used for the diagnosis of congenital defects in mtFAO. ASD participants (N = 10, 60%; male; mean age (SD) 7.4 (3.2) years) were divided in two age-equivalent groups based on the presence (N = 5) or absence (N = 5) of elevated blood AC levels. In addition, electron transport chain (ETC) activity in fibroblasts and muscle biopsies and clinical characteristics were compared between the ASD groups. Baseline fibroblast mtFAO was not significantly different in patients in comparison with control values. However, ASD patients with elevated AC exhibited significantly decreased mtFAO rates, muscle ETC complex II activity, and fibroblast ETC Complex II/III activity (p < 0.05), compared with patients without an AC signature. RSV significantly increased the mtFAO activity in all study groups (p = 0.001). The highest mtFAO changes in response to RSV were observed in fibroblasts from patients with more severe symptoms on the Social Responsiveness Scale total (p = 0.001) and Awareness, Cognition, Communication and Motivation subscales (all p < 0.01). These findings suggested recognition of an ASD patient subset characterized by an impaired mtFAO flux associated with abnormal blood AC. The study elucidated that RSV significantly increased fibroblast mtFAO irrespective of plasma AC status, and the highest changes to RSV effects on mtFAO were observed in the more severely affected patients.

6.
Mol Autism ; 12(1): 38, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034808

ABSTRACT

BACKGROUND: Sulforaphane (SF), an isothiocyanate in broccoli, has potential benefits relevant to autism spectrum disorder (ASD) through its effects on several metabolic and immunologic pathways. Previous clinical trials of oral SF demonstrated positive clinical effects on behavior in young men and changes in urinary metabolomics in children with ASD. METHODS: We conducted a 15-week randomized parallel double-blind placebo-controlled clinical trial with 15-week open-label treatment and 6-week no-treatment extensions in 57 children, ages 3-12 years, with ASD over 36 weeks. Twenty-eight were assigned SF and 29 received placebo (PL). Clinical effects, safety and tolerability of SF were measured as were biomarkers to elucidate mechanisms of action of SF in ASD. RESULTS: Data from 22 children taking SF and 23 on PL were analyzed. Treatment effects on the primary outcome measure, the Ohio Autism Clinical Impressions Scale (OACIS), in the general level of autism were not significant between SF and PL groups at 7 and 15 weeks. The effect sizes on the OACIS were non-statistically significant but positive, suggesting a possible trend toward greater improvement in those on treatment with SF (Cohen's d 0.21; 95% CI - 0.46, 0.88 and 0.10; 95% CI - 0.52, 0.72, respectively). Both groups improved in all subscales when on SF during the open-label phase. Caregiver ratings on secondary outcome measures improved significantly on the Aberrant Behavior Checklist (ABC) at 15 weeks (Cohen's d - 0.96; 95% CI - 1.73, - 0.15), but not on the Social Responsiveness Scale-2 (SRS-2). Ratings on the ABC and SRS-2 improved with a non-randomized analysis of the length of exposure to SF, compared to the pre-treatment baseline (p < 0.001). There were significant changes with SF compared to PL in biomarkers of glutathione redox status, mitochondrial respiration, inflammatory markers and heat shock proteins. Clinical laboratory studies confirmed product safety. SF was very well tolerated and side effects of treatment, none serious, included rare insomnia, irritability and intolerance of the taste and smell. LIMITATIONS: The sample size was limited to 45 children with ASD and we did not impute missing data. We were unable to document significant changes in clinical assessments during clinical visits in those taking SF compared to PL. The clinical results were confounded by placebo effects during the open-label phase. CONCLUSIONS: SF led to small yet non-statistically significant changes in the total and all subscale scores of the primary outcome measure, while for secondary outcome measures, caregivers' assessments of children taking SF showed statistically significant improvements compared to those taking PL on the ABC but not the SRS-2. Clinical effects of SF were less notable in children compared to our previous trial of a SF-rich preparation in young men with ASD. Several of the effects of SF on biomarkers correlated to clinical improvements. SF was very well tolerated and safe and effective based on our secondary clinical measures. TRIAL REGISTRATION: This study was prospectively registered at clinicaltrials.gov (NCT02561481) on September 28, 2015. Funding was provided by the U.S. Department of Defense.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/drug therapy , Child , Child, Preschool , Humans , Isothiocyanates/adverse effects , Laboratories, Clinical , Sulfoxides , United States
7.
Exp Neurol ; 330: 113322, 2020 08.
Article in English | MEDLINE | ID: mdl-32325157

ABSTRACT

Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations, with synaptic mitochondria being more vulnerable to injury-dependent consequences. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following TBI using phenelzine (PZ), an aldehyde scavenger, would preferentially protect synaptic mitochondria against LP-mediated damage in a dose- and time-dependent manner. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ (3-30 mg/kg) was administered subcutaneously (subQ) at different times post-injury. We found PZ treatment preserves both synaptic and non-synaptic mitochondrial bioenergetics at 24 h and that this protection is partially maintained out to 72 h post-injury using various dosing regimens. The results from these studies indicate that the therapeutic window for the first dose of PZ is likely within the first hour after injury, and the window for administration of the second dose seems to fall between 12 and 24 h. Administration of PZ was able to significantly improve mitochondrial respiration compared to vehicle-treated animals across various states of respiration for both the non-synaptic and synaptic mitochondria. The synaptic mitochondria appear to respond more robustly to PZ treatment than the non-synaptic, and further experimentation will need to be done to further understand these effects in the context of TBI.


Subject(s)
Brain Injuries, Traumatic/pathology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Phenelzine/pharmacology , Animals , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Lipid Peroxidation/drug effects , Male , Mitochondria/metabolism , Mitochondria/pathology , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Synapses/pathology
8.
Ann Clin Transl Neurol ; 7(5): 683-694, 2020 05.
Article in English | MEDLINE | ID: mdl-32343046

ABSTRACT

BACKGROUND: Developmental regression (DR) occurs in about one-third of children with Autism Spectrum Disorder (ASD) yet it is poorly understood. Current evidence suggests that mitochondrial function in not normal in many children with ASD. However, the relationship between mitochondrial function and DR has not been well-studied in ASD. METHODS: This cross-sectional study of 32 children, 2 to 8 years old with ASD, with (n = 11) and without (n = 12) DR, and non-ASD controls (n = 9) compared mitochondrial respiration and mtDNA damage and copy number between groups and their relation to standardized measures of ASD severity. RESULTS: Individuals with ASD demonstrated lower ND1, ND4, and CYTB copy number (Ps < 0.01) as compared to controls. Children with ASD and DR had higher maximal oxygen consumption rate (Ps < 0.02), maximal respiratory capacity (P < 0.05), and reserve capacity (P = 0.01) than those with ASD without DR. Coupling Efficiency and Maximal Respiratory Capacity were associated with disruptive behaviors but these relationships were different for those with and without DR. Higher ND1 copy number was associated with better behavior. CONCLUSIONS: This study suggests that individuals with ASD and DR may represent a unique metabolic endophenotype with distinct abnormalities in respiratory function that may put their mitochondria in a state of vulnerability. This may allow physiological stress to trigger mitochondrial decompensation as is seen clinically as DR. Since mitochondrial function was found to be related to ASD symptoms, the mitochondria could be a potential target for novel therapeutics. Additionally, identifying those with vulnerable mitochondrial before DR could result in prevention of ASD.


Subject(s)
Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Child Behavior/physiology , Mitochondria/metabolism , Oxygen Consumption/physiology , Problem Behavior , Child , Child, Preschool , Cross-Sectional Studies , DNA Copy Number Variations , DNA, Mitochondrial , Endophenotypes , Female , Humans , Male , NADH Dehydrogenase , Stress, Physiological/physiology
9.
Neuropharmacology ; 170: 108023, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32142792

ABSTRACT

The 21-aminosteroid ("lazaroid") U-74389G (U74), an inhibitor of lipid peroxidation (LP), was used to protect mitochondrial function following TBI in young adult male rats. The animals received a severe (2.2 mm) controlled cortical impact-TBI. U74 was administered intravenous at 15 min and 2 h post injury (hpi) followed by intraperitoneal dose at 8 hpi at the following doses (mg/kg): 0.3 (IV) + 1 (IP), 1 + 3, 3 + 10, 10 + 30. Total cortical mitochondria were isolated at 72 hpi and respiratory rates were measured. Mitochondrial 4-HNE and acrolein were evaluated as indicators of LP-mediated oxidative damage. At 72 h post-TBI injured animals had significantly lower mitochondrial respiration rates compared to sham. Administration of U74 at the 1 mg/kg dosing paradigm significantly improved mitochondrial respiration rates for States II, III, V(II) and RCR compared to vehicle-treated animals. At 72 h post-TBI injured animals administration of U74 also reduced reactive aldehydes levels compared to vehicle-treated animals. The aim of this study was to explore the hypothesis that interrupting secondary oxidative damage via acute pharmacological inhibition of LP by U74 following a CCI-TBI would provide mitochondrial neuroprotective effects in a dose-dependent manner. We found acute administration of U74 to injured rats resulted in improved mitochondrial function and lowered the levels of reactive aldehydes in the mitochondria. These results establish not only the most effective dose of U74 treatment to attenuate LP-mediated oxidative damage, but also set the foundation for further studies to explore additional neuroprotective effects following TBI.


Subject(s)
Antioxidants/therapeutic use , Brain Injuries, Traumatic/drug therapy , Cerebral Cortex/drug effects , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Pregnatrienes/therapeutic use , Age Factors , Animals , Antioxidants/pharmacology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Lipid Peroxidation/physiology , Male , Mitochondria/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnatrienes/pharmacology , Rats , Rats, Sprague-Dawley
10.
J Neurotrauma ; 36(8): 1231-1251, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30358485

ABSTRACT

Traumatic brain injury (TBI) results in the production of peroxynitrite (PN), leading to oxidative damage of lipids and protein. PN-mediated lipid peroxidation (LP) results in production of reactive aldehydes 4-hydroxynonenal (4-HNE) and acrolein. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following a TBI via phenelzine (PZ), analdehyde scavenger, would protect against LP-mediated mitochondrial and neuronal damage. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ was administered subcutaneously (s.c.) at 15 min (10 mg/kg) and 12 h (5 mg/kg) post-injury and for the therapeutic window/delay study, PZ was administered at 1 h (10 mg/kg) and 24 h (5 mg/kg). Mitochondrial and cellular protein samples were obtained at 24 and 72 h post-injury (hpi). Administration of PZ significantly improved mitochondrial respiration at 24 and 72 h compared with vehicle-treated animals. These results demonstrate that PZ administration preserves mitochondrial bioenergetics at 24 h and that this protection is maintained out to 72 hpi. Additionally, delaying the administration still elicited significant protective effects. PZ administration also improved mitochondrial Ca2+ buffering (CB) capacity and mitochondrial membrane potential parameters compared with vehicle-treated animals at 24 h. Although PZ treatment attenuated aldehyde accumulation post-injury, the effects were insignificant. The amount of α-spectrin breakdown in cortical tissue was reduced by PZ administration at 24 h, but not at 72 hpi compared with vehicle-treated animals. In conclusion, these results indicate that acute PZ treatment successfully attenuates LP-mediated oxidative damage eliciting multiple neuroprotective effects following TBI.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Phenelzine/pharmacology , Animals , Calcium Signaling/drug effects , Cytoskeleton/drug effects , Male , Mitochondria/drug effects , Rats , Rats, Sprague-Dawley
11.
Neuroscience ; 386: 265-283, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29960045

ABSTRACT

Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.


Subject(s)
Brain Injuries, Traumatic/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Synapses/metabolism , Animals , Brain Injuries, Traumatic/pathology , Cell Respiration/physiology , Lipid Peroxidation/physiology , Male , Mitochondria/physiology , Oligomycins/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Synapses/pathology
12.
J Neurotrauma ; 35(11): 1280-1293, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29336204

ABSTRACT

To date, all monotherapy clinical traumatic brain injury (TBI) trials have failed, and there are currently no Food and Drug Administration (FDA)-approved pharmacotherapies for the acute treatment of severe TBI. Due to the complex secondary injury cascade following injury, there is a need to develop multi-mechanistic combinational neuroprotective approaches for the treatment of acute TBI. As central mediators of the TBI secondary injury cascade, both mitochondria and lipid peroxidation-derived aldehydes make promising therapeutic targets. Cyclosporine A (CsA), an FDA-approved immunosuppressant capable of inhibiting the mitochondrial permeability transition pore, and phenelzine (PZ), an FDA-approved monoamine oxidase inhibitor capable of scavenging neurotoxic lipid peroxidation-derived aldehydes, have both been shown to be partially neuroprotective following experimental TBI. Therefore, it follows that the combination of PZ and CsA may enhance neuroprotection over either agent alone through the combining of distinct but complementary mechanisms of action. Additionally, as the first 72 h represents a critical time period following injury, it follows that continuous drug infusion over the first 72 h following injury may also lead to optimal neuroprotective effects. This is the first study to examine the effects of a 72 h subcutaneous continuous infusion of PZ, CsA, and the combination of these two agents on mitochondrial respiration, mitochondrial bound 4-hydroxynonenal (4-HNE), and acrolein, and α-spectrin degradation 72 h following a severe controlled cortical impact injury in rats. Our results indicate that individually, both CsA and PZ are able to attenuate mitochondrial 4-HNE and acrolein, PZ is able to maintain mitochondrial respiratory control ratio and cytoskeletal integrity but together, PZ and CsA are unable to maintain neuroprotective effects.


Subject(s)
Brain Injuries, Traumatic , Cyclosporine/pharmacology , Energy Metabolism/drug effects , Neuroprotective Agents/pharmacology , Phenelzine/pharmacology , Animals , Cytoskeleton/drug effects , Male , Mitochondria/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley
13.
Neurochem Int ; 111: 45-56, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28342966

ABSTRACT

Traumatic brain injury (TBI) results in rapid reactive oxygen species (ROS) production and oxidative damage to essential brain cellular components leading to neuronal dysfunction and cell death. It is increasingly appreciated that a major player in TBI-induced oxidative damage is the reactive nitrogen species (RNS) peroxynitrite (PN) which is produced in large part in injured brain mitochondria. Once formed, PN decomposes into highly reactive free radicals that trigger membrane lipid peroxidation (LP) of polyunsaturated fatty acids (e.g. arachidonic acid) and protein nitration (3-nitrotyrosine, 3-NT) in mitochondria and other cellular membranes causing various functional impairments to mitochondrial oxidative phosphorylation and calcium (Ca2+) buffering capacity. The LP also results in the formation of neurotoxic reactive aldehyde byproducts including 4-hydroxynonenal (4-HNE) and propenal (acrolein) which exacerbates ROS/RNS production and oxidative protein damage in the injured brain. Ultimately, this results in intracellular Ca2+ overload that activates proteolytic degradation of α-spectrin, a neuronal cytoskeletal protein. Therefore, the aim of this study was to establish the temporal evolution of mitochondrial dysfunction, oxidative damage and cytoskeletal degradation in the brain following a severe controlled cortical impact (CCI) TBI in young male adult rats. In mitochondria isolated from an 8 mm diameter cortical punch including the 5 mm wide impact site and their respiratory function studied ex vivo, we observed an initial decrease in complex I and II mitochondrial bioenergetics within 3 h (h). For complex I bioenergetics, this partially recovered by 12-16 h, whereas for complex II respiration the recovery was complete by 12 h. During the first 24 h, there was no evidence of an injury-induced increase in LP or protein nitration in mitochondrial or cellular homogenates. However, beginning at 24 h, there was a gradual secondary decline in complex I and II respiration that peaked at 72 h. post-TBI that coincided with progressive peroxidation of mitochondrial and cellular lipids, protein nitration and protein modification by 4-HNE and acrolein. The oxidative damage and respiratory failure paralleled an increase in Ca2+-induced proteolytic degradation of the neuronal cytoskeletal protein α-spectrin indicating a failure of intracellular Ca2+ homeostasis. These findings of a surprisingly delayed peak in secondary injury, suggest that the therapeutic window and needed treatment duration for certain antioxidant treatment strategies following CCI-TBI in rodents may be longer than previously believed.


Subject(s)
Brain Injuries, Traumatic/metabolism , Free Radicals/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Antioxidants/pharmacology , Brain Injuries, Traumatic/drug therapy , Cytoskeleton/metabolism , Disease Models, Animal , Lipid Peroxidation/physiology , Mitochondria/drug effects , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Time Factors
14.
J Neurotrauma ; 34(7): 1291-1301, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27596283

ABSTRACT

Currently, there are no Food and Drug Administration (FDA)-approved pharmacotherapies for the treatment of those with traumatic brain injury (TBI). As central mediators of the secondary injury cascade, mitochondria are promising therapeutic targets for prevention of cellular death and dysfunction after TBI. One of the most promising and extensively studied mitochondrial targeted TBI therapies is inhibition of the mitochondrial permeability transition pore (mPTP) by the FDA-approved drug, cyclosporine A (CsA). A number of studies have evaluated the effects of CsA on total brain mitochondria after TBI; however, no study has investigated the effects of CsA on isolated synaptic and non-synaptic mitochondria. Synaptic mitochondria are considered essential for proper neurotransmission and synaptic plasticity, and their dysfunction has been implicated in neurodegeneration. Synaptic and non-synaptic mitochondria have heterogeneous characteristics, but their heterogeneity can be masked in total mitochondrial (synaptic and non-synaptic) preparations. Therefore, it is essential that mitochondria targeted pharmacotherapies, such as CsA, be evaluated in both populations. This is the first study to examine the effects of CsA on isolated synaptic and non-synaptic mitochondria after experimental TBI. We conclude that synaptic mitochondria sustain more damage than non-synaptic mitochondria 24 h after severe controlled cortical impact injury (CCI), and that intraperitoneal administration of CsA (20 mg/kg) 15 min after injury improves synaptic and non-synaptic respiration, with a significant improvement being seen in the more severely impaired synaptic population. As such, CsA remains a promising neuroprotective candidate for the treatment of those with TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Cyclosporine/pharmacology , Immunosuppressive Agents/pharmacology , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Synapses/metabolism , Animals , Cyclosporine/administration & dosage , Disease Models, Animal , Immunosuppressive Agents/administration & dosage , Male , Mitochondria/drug effects , Neuroprotective Agents/administration & dosage , Rats, Sprague-Dawley , Synapses/drug effects
15.
J Neurotrauma ; 34(7): 1302-1317, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27750484

ABSTRACT

Lipid peroxidation (LP) is a key contributor to the pathophysiology of traumatic brain injury (TBI). Traditional antioxidant therapies are intended to scavenge the free radicals responsible for either initiation or propagation of LP. A more recently explored approach involves scavenging the terminal LP breakdown products that are highly reactive and neurotoxic carbonyl compounds, 4-hydroxynonenal (4-HNE) and acrolein (ACR), to prevent their covalent modification and rendering of cellular proteins nonfunctional leading to loss of ionic homeostasis, mitochondrial failure, and subsequent neuronal death. Phenelzine (PZ) is a U.S. Food and Drug Administration-approved monoamine oxidase (MAO) inhibitor (MAO-I) used for treatment of refractory depression that possesses a hydrazine functional group recently discovered by other investigators to scavenge reactive carbonyls. We hypothesized that PZ will protect mitochondrial function and reduce markers of oxidative damage by scavenging LP-derived aldehydes. In a first set of in vitro studies, we found that exogenous application of 4-HNE or ACR significantly reduced respiratory function and increased markers of oxidative damage (p < 0.05) in isolated noninjured rat brain cortical mitochondria, whereas PZ pre-treatment significantly prevented mitochondrial dysfunction and oxidative modification of mitochondrial proteins in a concentration-related manner (p < 0.05). This effect was not shared by a structurally similar MAO-I, pargyline, which lacks the hydrazine group, confirming that the mitochondrial protective effects of PZ were related to its carbonyl scavenging and not to MAO inhibition. In subsequent in vivo studies, we documented that PZ treatment begun at 15 min after controlled cortical impact TBI significantly attenuated 72-h post-injury mitochondrial respiratory dysfunction. The cortical mitochondrial respiratory protection occurred together with a significant increase in cortical tissue sparing.


Subject(s)
Acrolein/metabolism , Aldehydes/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Cerebral Cortex , Mitochondria/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacokinetics , Phenelzine/pharmacology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/injuries , Cerebral Cortex/metabolism , Disease Models, Animal , Male , Mitochondria/drug effects , Monoamine Oxidase Inhibitors/administration & dosage , Neuroprotective Agents/administration & dosage , Phenelzine/administration & dosage , Rats , Rats, Sprague-Dawley
16.
J Bioenerg Biomembr ; 48(2): 169-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25595872

ABSTRACT

Extensive evidence has demonstrated an important role of oxygen radical formation (i.e., oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Lipid Peroxidation , Mitochondria/metabolism , Spinal Cord Injuries/metabolism , Spine/metabolism , Animals , Brain/pathology , Brain Injuries/pathology , Humans , Mitochondria/pathology , Spinal Cord Injuries/pathology , Spine/pathology
17.
Exp Neurol ; 264: 103-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25432068

ABSTRACT

The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI.


Subject(s)
Abietanes/therapeutic use , Antioxidants/therapeutic use , Brain Injuries/complications , Cytoskeleton/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/etiology , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Adenosine Diphosphate/metabolism , Aldehydes/metabolism , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries/drug therapy , Cytoskeleton/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Lipid Peroxidation/drug effects , Male , Mice , Succinic Acid/metabolism
18.
Free Radic Biol Med ; 57: 1-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23275005

ABSTRACT

The transcription factor NF-E2-related factor 2 (Nrf2) mediates transcription of antioxidant/cytoprotective genes by binding to the antioxidant-response element (ARE) within DNA. Upregulation of these genes constitutes a pleiotropic cytoprotective defense pathway, which has been shown to produce neuroprotection in numerous models by decreasing lipid peroxidation (LP) as measured by the neurotoxic LP by-product 4-hydroxynonenal (4-HNE). As neuronal mitochondria have previously been shown to be susceptible to insult-induced LP-mediated oxidative damage, we sought to mechanistically investigate whether Nrf2-ARE activation in vivo could protect mitochondria from subsequent 4-HNE exposure ex vivo. Young adult male CF-1 mice were administered one of two known Nrf2-ARE activators as single intraperitoneal doses-sulforaphane (SFP; 5.0mg/kg) or carnosic acid (CA; 1.0mg/kg)-or their respective vehicles 48 h before Ficoll isolation of rat cerebral cortical mitochondria. Purified mitochondria were then exposed ex vivo to 4-HNE for 15 min at 37 °C, which we showed to cause a concentration-related inhibition of mitochondrial respiration together with covalent binding of 4-HNE to mitochondrial proteins. We chose a 30 µM concentration of 4-HNE, which produced an approximately 50% inhibition of complex I- or complex II-driven respiration, to assess whether prior in vivo Nrf2-ARE-activating compounds would increase the resistance of the isolated cortical mitochondria to 4-HNE's mitotoxic effects. Administration of either compound significantly increased (p < 0.05) expression of heme oxygenase-1 mRNA in cortical tissue 48 h postadministration, verifying that both compounds were capable of inducing the Nrf2-ARE pathway. Moreover, the prior in vivo administration of SFP and CA significantly (p < 0.05) attenuated 4-HNE-induced inhibition of mitochondrial respiration for complex I, but only carnosic acid acted to protect complex II. Furthermore, both CA and SFP significantly (p < 0.05) reduced the amount of 4-HNE bound to mitochondrial proteins as determined by Western blot. These results demonstrate the capability of in vivo Nrf2-ARE induction to protect from 4-HNE toxicity to cortical mitochondria ex vivo. Ongoing studies will determine the therapeutic efficacy of Nrf2-ARE activators to attenuate traumatic brain injury-induced pathophysiology.


Subject(s)
Abietanes/pharmacology , Antioxidant Response Elements/physiology , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Thiocyanates/pharmacology , Aldehydes/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology , Cell Respiration/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Isothiocyanates , Male , Mice , RNA, Messenger/biosynthesis , Rats , Sulfoxides
19.
J Cereb Blood Flow Metab ; 33(4): 593-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23321786

ABSTRACT

Phenelzine (PZ) is a scavenger of the lipid peroxidation (LP)-derived reactive aldehyde 4-hydroxynonenal (4-HNE) due to its hydrazine functional group, which can covalently react with 4-HNE. In this study, we first examined the ability of PZ to prevent the respiratory depressant effects of 4-HNE on normal isolated brain cortical mitochondria. Second, in rats subjected to controlled cortical impact traumatic brain injury (CCI-TBI), we evaluated PZ (10 mg/kg subcutaneously at 15 minutes after CCI-TBI) to attenuate 3-hour post-TBI mitochondrial respiratory dysfunction, and in separate animals, to improve cortical tissue sparing at 14 days. While 4-HNE exposure inhibited mitochondrial complex I and II respiration in a concentration-dependent manner, pretreatment with equimolar concentrations of PZ antagonized these effects. Western blot analysis demonstrated a PZ decrease in 4-HNE in mitochondrial proteins. Mitochondria isolated from peri-contusional brain tissue of CCI-TBI rats treated with vehicle at 15 minutes after injury showed a 37% decrease in the respiratory control ratio (RCR) relative to noninjured mitochondria. In PZ-treated rats, RCR suppression was prevented (P<0.05 versus vehicle). In another cohort, PZ administration increased spared cortical tissue from 86% to 97% (P<0.03). These results suggest that PZ's neuroprotective effect is due to mitochondrial protection by scavenging of LP-derived 4-HNE.


Subject(s)
Brain Injuries/drug therapy , Lipid Peroxidation/drug effects , Mitochondria/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Phenelzine/pharmacology , Aldehydes/metabolism , Animals , Brain Injuries/metabolism , Brain Injuries/pathology , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Male , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oxygen Consumption/drug effects , Rats , Rats, Sprague-Dawley
20.
Indian J Psychiatry ; 54(2): 144-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22988321

ABSTRACT

BACKGROUND: An exceptional increase in the number and proportion of older adults in the country, rapid increase in nuclear families, and contemporary changes in psychosocial matrix and values often compel this segment of society to live alone or in old age homes. As this group of people is more vulnerable to mental health problems, therefore a pilot study was carried out by the Department of Geriatric Mental Health, Lucknow with following aim. AIM: To study mental health and associated morbidities among inhabitants of old age homes. MATERIALS AND METHODS: It was an exploratory study in which information about available old age homes at Lucknow were obtained and three of them were randomly selected. All the heads of these institutions were contacted and permission to carry out the study was obtained. Consent from the participants was obtained. Survey Psychiatric Assessment Schedule (SPAS), Mini Mental State Examination (MMSE), Mood Disorder Questionnaire (MDQ), and SCAN-based clinical interviews were applied for assessment by a trained research staff. RESULTS: Forty five elderly inhabitants who had given their consent to participate in the study were interviewed. Depression (37.7%) was found to be the most common mental health problem followed by anxiety disorders (13.3%) and dementia (11.1%). CONCLUSIONS: A majority of the inhabitants (64.4%) were having psychiatric morbidity and no one was observed physically fit. Large sample studies are needed to substantiate the observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...