Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 30(3): 678-692, 2021 03.
Article in English | MEDLINE | ID: mdl-33474748

ABSTRACT

Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3-4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3-4 showed binding and a gain in α-helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15 N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3-4 are involved in the interaction with the DPC micelles, which themselves gain α-helical structure.


Subject(s)
Arabidopsis Proteins , Plant Proteins , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circular Dichroism , Intrinsically Disordered Proteins , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Protein Conformation
2.
PLoS One ; 15(8): e0237177, 2020.
Article in English | MEDLINE | ID: mdl-32760115

ABSTRACT

LEA3 proteins, a family of abiotic stress proteins, are defined by the presence of a tryptophan-containing motif, which we name the W-motif. We use Pfam LEA3 sequences to search the Phytozome database to create a W-motif definition and a LEA3 sequence dataset. A comprehensive analysis of these sequences revealed four N-terminal motifs, as well as two previously undiscovered C-terminal motifs that contain conserved acidic and hydrophobic residues. The general architecture of the LEA3 sequences consisted of an N-terminal motif with a potential mitochondrial transport signal and the twin-arginine motif cut-site, followed by a W-motif and often a C-terminal motif. Analysis of species distribution of the motifs showed that one architecture was found exclusively in Commelinids, while two were distributed fairly evenly over all species. The physiochemical properties of the different architectures showed clustering in a relatively narrow range compared to the previously studied dehydrins. The evolutionary analysis revealed that the different sequences grouped into clades based on architecture, and that there appear to be at least two distinct groups of LEA3 proteins based on their architectures and physiochemical properties. The presence of LEA3 proteins in non-vascular plants but their absence in algae suggests that LEA3 may have arisen in the evolution of land plants.


Subject(s)
Conserved Sequence , Plant Proteins/genetics , Amino Acid Motifs , Evolution, Molecular , Plant Proteins/chemistry , Plants/genetics , Protein Domains
3.
Methods Mol Biol ; 2141: 181-194, 2020.
Article in English | MEDLINE | ID: mdl-32696357

ABSTRACT

Intrinsically disordered proteins (IDPs) describe a group of proteins that do not have a regular tertiary structure and typically have very little ordered secondary structure. Despite not following the biochemical dogma of "structure determines function" and "function determines structure," IDPs have been identified as having numerous biological functions. We describe here the steps to express and purify the intrinsically disordered stress response protein, Late embryogenesis abundant protein 3-2 from Arabidopsis thaliana (AtLEA 3-2), with 15N and 13C isotopes in E. coli, although the protocol can be adapted for any IDP with or without isotopic labeling. The atlea 3-2 gene has been cloned into the pET-SUMO vector that in addition to the SUMO portion encodes an N-terminal hexahistidine sequence (His-tag). This vector allows for the SUMO-AtLEA 3-2 fusion protein to be purified using Ni-affinity chromatography and, through the use of ubiquitin-like-specific protease 1 (Ulp1, a SUMO protease), results in an AtLEA 3-2 with a native N-terminus. We also describe the expression and purification of Ulp1 itself.


Subject(s)
Intrinsically Disordered Proteins/isolation & purification , Intrinsically Disordered Proteins/metabolism , Cell Fractionation , Electrophoresis, Polyacrylamide Gel , Recombinant Proteins/isolation & purification
4.
Front Plant Sci ; 8: 709, 2017.
Article in English | MEDLINE | ID: mdl-28523013

ABSTRACT

Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine). The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid), suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score) are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity).

SELECTION OF CITATIONS
SEARCH DETAIL
...