Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e32776, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975083

ABSTRACT

The goal of the current study was to create and assess the effectiveness of a hand-pulled ergonomically designed flame weeder. The developed weeder was tested in the field at three operating pressures (20, 30 and 40 Psi) and forward speeds (1.00, 1.25 and 1.50 km/h) to study their effects on plant damage, survival rates, weight preservation rates, weed management effectiveness, soil temperatures, and gas and energy consumption. Thereafter, at optimized values of forward speed and operating pressure, a comparative assessment of flame weeding with traditional methods (mechanical and manual weeding) was done in terms of weed control effectiveness, operational time, energy consumption, and cost of operation. Results showed that the optimal performance of the designed flame weeder was achieved when operated at a speed of 1 km/h and an operating pressure of 40 psi. The survival rate, weight preservation rate, weed control efficiency, change in soil temperature, recovery rate, plant damage, gas consumption, and energy consumption were observed to be 27.3 %, 32.5 %, 91.1 %, 40.74 °C, 8.5 %, 2.2 %, 4.05 kg/h, and 2500.24 MJ/ha, respectively, at optimized values of forward speed (1.00 km/h) and operating pressure (40 Psi). The actual field capacity, field efficiency and operating cost of the flame weeder were 0.0755 ha/h, 94.94 %, and 3620.81 ₹/ha, respectively. Hand weeding had the best level of weed control effectiveness, but it was a laborious, time-consuming process. When compared to manual weeding, flame weeding was 50.42 % cheaper and 94.82 % faster.

2.
Sensors (Basel) ; 24(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38894193

ABSTRACT

The growing demand for agricultural output and limited resources encourage precision applications to generate higher-order output by utilizing minimal inputs of seed, fertilizer, land, and water. An electronically operated planter was developed, considering problems like ground-wheel skidding, field vibration, and the lack of ease in field adjustments of ground-wheel-driven seed-metering plates. The seed-metering plate of each unit of the developed planter is individually driven by a brushless direct current (BLDC) motor, and a BLDC motor-based aspirator is attached for pneumatic suction of seeds. The revolutions per minute (RPM) of the seed-metering plate are controlled by a microcontroller as per the received data relating to RPM from the ground wheel and the current RPM of the seed-metering plate. A feedback loop with proportional integral derivative (PID) control is responsible for reducing the error. Additionally, each row unit is attached to a parallelogram-based depth control system that can provide depth between 0 and 100 mm. The suction pressure in each unit is regulated as per seed type using the RPM control knob of an individual BLDC motor-based aspirator. The row-to-row spacing can be changed from 350 mm to any desired spacing. The cotton variety selected for the study was RCH 659, and the crucial parameters like orifice size, vacuum pressure, and forward speed were optimized in the laboratory with the adoption of a central composite rotatable design. An orifice diameter of 2.947 mm with vacuum pressure of 3.961 kPa and forward speed of 4.261 km/h was found optimal. A quality feed index of 93% with a precision index of 8.01% was observed from laboratory tests under optimized conditions. Quality feed index and precision index values of 88.8 and 12.75%, respectively, were obtained from field tests under optimized conditions.

3.
Sci Rep ; 14(1): 1961, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263240

ABSTRACT

To simulate the bending behaviour of paddy straw at varied moisture contents after crop harvesting, we created a flexible paddy straw specimen model based on the Hertz-Mindlin with parallel contact bonding model using the discrete element model (DEM) approach. The research presented in this study aims to investigate a new approach called Definitive Screening Design (DSD) for parameterizing and screening the most significant parameters of the DEM model. This investigation will specifically focus on the three-point bending test as a means of parameterization, and the shear plate test will be used for validation purposes. In addition, the most influential DEM parameters were optimized using another Design of Experiments approach called Central Composite Design. The findings from the DSD indicated that parameters such as bonded disk scale, normal stiffness, and shear stiffness have the highest impact on the bending force, while the coefficient of static friction (Straw-Steel) has the least effect. The three bonding parameters were respectively calibrated with the loading rate (0.42, 0.5, and 0.58 mm s-1) and a good agreement between actual and simulated shear force at moisture content M1-35 ± 3.4%, M2-24 ± 2.2% and M3-17 ± 2.6%. Modelled stem helps simulate the straw with low error and increases the accuracy of the simulation. The validated model, with an average relative error of 5.43, 7.63, and 8.86 per cent, produced reasonable agreement between measured and simulated shear force value and loading rate.

4.
BMJ Open ; 10(11): e037335, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33148727

ABSTRACT

INTRODUCTION: Around 9% of India's children under six are diagnosed with neurodevelopmental disorders. Low-resource, rural communities often lack programmes for early identification and intervention. The Prechtl General Movement Assessment (GMA) is regarded as the best clinical tool to predict cerebral palsy in infants <5 months. In addition, children with developmental delay, intellectual disabilities, late detected genetic disorders or autism spectrum disorder show abnormal general movements (GMs) during infancy. General Movement Assessment in Neonates for Early Identification and Intervention, Social Support and Health Awareness (G.A.N.E.S.H.) aims to (1) provide evidence as to whether community health workers can support the identification of infants at high-risk for neurological and developmental disorders and disabilities, (2) monitor further development in those infants and (3) initiate early and targeted intervention procedures. METHODS: This 3-year observational cohort study will comprise at least 2000 infants born across four districts of Uttar Pradesh, India. Community health workers, certified for GMA, video record and assess the infants' GMs twice, that is, within 2 months after birth and at 3-5 months. In case of abnormal GMs and/or reduced MOSs, infants are further examined by a paediatrician and a neurologist. If necessary, early intervention strategies (treatment as usual) are introduced. After paediatric and neurodevelopmental assessments at 12-24 months, outcomes are categorised as normal or neurological/developmental disorders. Research objective (1): to relate the GMA to the outcome at 12-24 months. Research objective (2): to investigate the impact of predefined exposures. Research objective (3): to evaluate the interscorer agreement of GMA. ETHICS AND DISSEMINATION: G.A.N.E.S.H. received ethics approval from the Indian Government Chief Medical Officers of Varanasi and Mirzapur and from the Ramakrishna Mission Home of Service in Varanasi. GMA is a worldwide used diagnostic tool, approved by the Ethics Committee of the Medical University of Graz, Austria (27-388 ex 14/15). Apart from peer-reviewed publications, we are planning to deploy G.A.N.E.S.H. in other vulnerable settings.


Subject(s)
Autism Spectrum Disorder , Cerebral Palsy , Austria , Autism Spectrum Disorder/diagnosis , Cohort Studies , Female , Humans , India , Infant , Infant, Newborn , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...