Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 94: 46-58, 2023 01.
Article in English | MEDLINE | ID: mdl-36336097

ABSTRACT

A mobile phone is now a commonly used device for digital media and communication among all age groups. Young adolescents use it for longer durations, which exposes them to radiofrequency electromagnetic radiation (RF-EMR). This exposure can lead to neuropsychiatric changes. The underlying cellular mechanism behind these changes requires detailed investigation. In the present study, we investigated the effect of RF-EMR emitted from mobile phones on young adolescent rat brains. Wistar rats (5 weeks, male) were exposed to RF-EMR signal (2115 MHz) at a head average specific absorption rate (SAR) of 1.51 W/kg continuously for 8 h. Higher level of lipid peroxidation, carbon-centered lipid radicals, and single-strand DNA damage was observed in the brain of rat exposed to RF-EMR. The number of BrdU-positive cells in the dentate gyrus (DG) decreased in RF-EMR-exposed rats, indicating reduced neurogenesis. RF-EMR exposure also induced degenerative changes and neuronal loss in DG neurons but had no effect on the CA3 and CA1 neurons of the hippocampus and cerebral cortex. The activity of Pro-caspase3 did not increase upon exposure in any of the brain regions, pointing out that degeneration observed in the DG region is not dependent on caspase activation. Results indicate that short-term acute exposure to RF-EMR induced the generation of carbon-centered lipid radicals and nuclear DNA damage, both of which likely played a role in the impaired neurogenesis and neuronal degeneration seen in the young brain's hippocampus region. The understanding of RF-EMR-induced alteration in the brain at the cellular level will help develop appropriate interventions for reducing its adverse impact.


Subject(s)
Electromagnetic Fields , Internet , Rats , Male , Animals , Rats, Wistar , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Neurons , Brain/radiation effects , DNA Damage , Lipids
2.
Environ Toxicol ; 37(4): 836-847, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34984797

ABSTRACT

Worldwide, the number of mobile phone users has increased from 5.57 billion in 2011 to 6.8 billion in 2019. However, short- and long-term impact of the electromagnetic radiation emitting from mobile phones on tissue homeostasis with particular to brain proteome composition needs further investigation. In this study, we attempted a global proteome profiling study of rat hippocampus exposed to mobile phone radiation for 20 weeks (for 3 h/day for 5 days/week) to identify deregulated proteins and western blot analysis for validation. As a result, we identified 358 hippocampus proteins, of which 16 showed deregulation (log2 (exposed/sham) ≥ ±1.0, p-value <.05). Majority of these deregulated proteins grouped into three clusters sharing similar molecular pathways. A set of four proteins (Succinate-semialdehyde dehydrogenase: Aldh5a1, Na+ K+ transporting ATPase: Atp1b2, plasma membrane calcium transporting ATPase: PMCA and protein S100B) presenting each functional pathway were selected for validation. Western blot analysis of these proteins, in an independent sample set, corroborated the mass spectrometry findings. Aldh5a1 involve in cellular energy metabolism, both Atp1b2 and PMCA responsible for membrane transport and protein S100B have a neuroprotective role. In conclusion, we present a deregulated hippocampus proteome upon mobile phone radiation exposure, which might influence the healthy functioning of the brain.


Subject(s)
Cell Phone , Electromagnetic Fields , Animals , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Hippocampus , Proteome , Rats
3.
Environ Sci Pollut Res Int ; 27(16): 19340-19351, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32212071

ABSTRACT

In the present lifestyle, we are continuously exposed to radiofrequency electromagnetic field (RF-EMF) radiation generated mainly by mobile phones (MP). Among other organs, our brain and hippocampus in specific, is the region where effect of any environmental perturbation is most pronounced. So, this study was aimed to examine changes in major parameters (oxidative stress, level of pro-inflammatory cytokines (PICs), hypothalamic-pituitary-adrenal (HPA) axis hormones, and contextual fear conditioning) which are linked to hippocampus directly or indirectly, upon exposure to mobile phone radiofrequency electromagnetic field (MP-RF-EMF) radiation. Exposure was performed on young adult male Wistar rats for 16 weeks continuously (2 h/day) with MP-RF-EMF radiation having frequency, power density, and specific absorption rate (SAR) of 1966.1 MHz, 4.0 mW/cm2, and 0.36 W/kg, respectively. Another set of animals kept in similar conditions without any radiation exposure serves as control. Towards the end of exposure period, animals were tested for fear memory and then euthanized to measure hippocampal oxidative stress, level of circulatory PICs, and stress hormones. We observed significant increase in hippocampal oxidative stress (p < 0.05) and elevated level of circulatory PICs viz. IL-1beta (p < 0.01), IL-6 (p < 0.05), and TNF-alpha (p < 0.001) in experimental animals upon exposure to MP-RF-EMF radiation. Adrenal gland weight (p < 0.001) and level of stress hormones viz. adrenocorticotropic hormone (ACTH) (p < 0.01) and corticosterone (CORT) (p < 0.05) were also found to increase significantly in MP-RF-EMF radiation-exposed animals as compared with control. However, alteration in contextual fear memory was not significant enough. In conclusion, current study shows that chronic exposure to MP-RF-EMF radiation emitted from mobile phones may induce oxidative stress, inflammatory response, and HPA axis deregulation. However, changes in hippocampal functionality depend on the complex interplay of several opposing factors that got affected upon MP-RF-EMF exposure.


Subject(s)
Cell Phone , Hypothalamo-Hypophyseal System , Animals , Electromagnetic Fields , Fear , Humans , Male , Oxidative Stress , Pituitary-Adrenal System , Radio Waves , Rats , Rats, Wistar , Young Adult
4.
Andrologia ; 51(3): e13201, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30461041

ABSTRACT

In recent years, there has been significant increase in mobile phone users. With this, health concerns associated with the exposure to electromagnetic radiation are also increasing. Continuous exposure to electromagnetic (EM) radiation generated from mobile phone is one of the probable reasons behind increasing male infertility. EM radiations induce oxidative stress that leads to numerous changes in reproductive parameters. With this hypothesis, we studied the effect of 3G mobile phone radiations on the reproductive system of male Wistar rats. Adult rats were divided into two groups: control and radio frequency-exposed. The animals were exposed to 3G mobile phone radiation for 45 days (2 hr/day) in specially designed exposure setup under standard conditions. Various biochemical and physiological parameters such as sperm count, sperm morphology, mitochondrial activity, lipid peroxidation, reactive oxygen species level and histopathological analysis were studied. Histopathological examination revealed a reduction in spermatogenic cells and alterations in sperm membrane. Significant increase in ROS and lipid peroxidation level with simultaneously decrease in sperm count, alterations in sperm tail morphology were observed in the exposed group. In conclusion, exposure to mobile phone radiations induces oxidative stress in male Wistar rats which may lead to alteration in sperm parameters and affects their fertility.


Subject(s)
Electromagnetic Radiation , Oxidative Stress/radiation effects , Reactive Oxygen Species/metabolism , Spermatozoa/radiation effects , Animals , Cell Phone , Lipid Peroxidation/radiation effects , Male , Rats , Rats, Wistar , Sperm Count , Spermatozoa/metabolism , Testis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...