Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 957512, 2022.
Article in English | MEDLINE | ID: mdl-36776550

ABSTRACT

Introduction: Diabetes is a potent risk factor for the activation of latent tuberculosis and worsens the tuberculosis (TB) treatment outcome. The major reason for mortality and morbidity in diabetic patients is due to their increased susceptibility to TB. Thus, the study was conducted to understand the crosstalk between M. tuberculosis and its host upon latent tuberculosis infection and under hyperglycemic conditions or diabetes. Methods: An animal model was employed to study the relationship between latent tuberculosis and diabetes. BCG immunization was done in mice before infection with M. tuberculosis, and latency was confirmed by bacillary load, histopathological changes in the lungs and gene expression of hspX, tgs1, tgs3 and tgs5. Diabetes was then induced by a single high dose of streptozotocin (150 mg/kg body weight). Host factors, like various cytokines and MMPs (Matrix metalloproteinases), which play an important role in the containment of mycobacterial infection were studied in vivo and in vitro. Results: A murine model of latent TB was developed, which was confirmed by CFU counts (<104 in the lungs and spleen) and granuloma formation in lungs in the latent TB group. Also, the gene expression of hspX, tgs1, and tgs5 was upregulated, and after diabetes induction, blood glucose levels were >200 mg/dl. An in vitro study employing a THP-1 macrophage model of latent and active tuberculosis under normal and high glucose conditions showed that dormant bacilli were better contained in the presence of 5.5 mM glucose concentration as compared with active bacilli. However, the killing and restriction efficiency of macrophages decreased, and CFU counts increased significantly with an increase in glucose concentration. Discussion: The decreased levels of MCP-1, decreased expression of mmp-9, and increased expression of mmp-1 in the latent group at high glucose concentrations could explain the failure of granuloma formation at high glucose conditions.


Subject(s)
Diabetes Mellitus , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Granuloma/microbiology , Glucose
2.
Autophagy ; 17(2): 476-495, 2021 02.
Article in English | MEDLINE | ID: mdl-32079455

ABSTRACT

Opportunistic bacterial infections amongst HIV-infected individuals contribute significantly to HIV-associated mortality. The role of HIV-mediated modulation of innate mechanisms like autophagy in promoting opportunistic infections, however, remains obscure. Here we show, HIV reactivation in or infection of macrophages inhibits autophagy and helps the survival of pathogenic Mycobacterium tuberculosis (Mtb) and nonpathogenic non-tuberculous mycobacterial strains (NTMs). The HIV-mediated impairment of xenophagy flux facilitated bacterial survival. Activation of autophagy by trehalose could induce xenophagy flux and kill intracellular Mtb or NTMs either during single or co-infections. Trehalose, we delineate, activates PIKFYVE leading to TFEB nuclear translocation in MCOLN1-dependent manner to induce autophagy. Remarkably, trehalose significantly reduced HIV-p24 levels in ex-vivo-infected PBMCs or PBMCs from treatment-naive HIV patients and also controlled mycobacterial survival within Mtb-infected animals. To conclude, we report leveraging of HIV-mediated perturbed host innate-immunity by opportunistic bacterial pathogens and show an attractive therapeutic strategy for HIV and associated co-morbidities.Abbreviations: AIDS: acquired immune deficiency syndrome; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; BafA1: bafilomycin A1; CFU: colony forming unit; CTSD: cathepsin D; CD63: CD63 molecule; EGFP: enhanced green fluorescent protein; FRET: Förster resonance energy transfer; GABARAP: gamma-aminobutyric acid receptor-associated protein; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; GLUT: glucose transporter; HIV: human immunodeficiency virus; hMDMs: human monocyte derived macrophages; IL2: interleukin 2; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: lipidated microtubule-associated proteins 1A/1B light chain 3B; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin; mRFP: monomeric red fluorescent protein; M6PR: mannose-6-phosphate receptor; NAC: N- acetyl- L -cysteine; NTM's: non-tuberculous mycobacteria; PBMC: Peripheral Blood Mononuclear cells; PIKFYVE: phosphoinositide kinase; FYVE-Type Zinc Finger; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; PtdIns(3,5)P2: Phosphatidylinositol 3,5-bisphosphate; ptfLC3: pEGFP-mRFP-LC3; ROS: reactive oxygen species; SQSTM1: sequestosome1; TFEB: transcription factor EB; MCOLN1/TRPML1: mucolipin 1; PIP4P1/TMEM55B: Human trans-membrane Protein 55B; UVRAG: UV Radiation Resistance Associate; VPS35: vacuolar protein sorting associated protein 35; WDR45: WD repeat domain 45; YCAM: Yellow Chameleon.


Subject(s)
Autophagosomes/virology , Autophagy/drug effects , HIV Infections/drug therapy , Leukocytes, Mononuclear/drug effects , Trehalose/pharmacology , Animals , Autophagosomes/metabolism , Autophagy/physiology , Coinfection/drug therapy , Coinfection/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Macrophages/virology , Mycobacterium/metabolism , Mycobacterium/virology , Trehalose/metabolism
3.
Nat Commun ; 11(1): 3062, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546788

ABSTRACT

Anti-tuberculosis (TB) drugs, while being highly potent in vitro, require prolonged treatment to control Mycobacterium tuberculosis (Mtb) infections in vivo. We report here that mesenchymal stem cells (MSCs) shelter Mtb to help tolerate anti-TB drugs. MSCs readily take up Mtb and allow unabated mycobacterial growth despite having a functional innate pathway of phagosome maturation. Unlike macrophage-resident ones, MSC-resident Mtb tolerates anti-TB drugs remarkably well, a phenomenon requiring proteins ABCC1, ABCG2 and vacuolar-type H+ATPases. Additionally, the classic pro-inflammatory cytokines IFNγ and TNFα aid mycobacterial growth within MSCs. Mechanistically, evading drugs and inflammatory cytokines by MSC-resident Mtb is dependent on elevated PGE2 signaling, which we verify in vivo analyzing sorted CD45-Sca1+CD73+-MSCs from lungs of infected mice. Moreover, MSCs are observed in and around human tuberculosis granulomas, harboring Mtb bacilli. We therefore propose, targeting the unique immune-privileged niche, provided by MSCs to Mtb, can have a major impact on tuberculosis prevention and cure.


Subject(s)
Antitubercular Agents/pharmacology , Mesenchymal Stem Cells/microbiology , Mycobacterium tuberculosis/pathogenicity , Stem Cell Niche/immunology , Tuberculosis/microbiology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Cells, Cultured , Dinoprostone/metabolism , Host-Pathogen Interactions , Humans , Interferon-gamma/pharmacology , Isoniazid/pharmacology , Lysosomes/microbiology , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Multidrug Resistance-Associated Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Neoplasm Proteins/metabolism , Phagosomes/microbiology , Tuberculosis/pathology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Tumor Necrosis Factor-alpha/pharmacology
4.
Indian J Exp Biol ; 54(3): 180-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27145631

ABSTRACT

Newcastle Disease (ND) is one of the major causes of economic loss in the poultry industry. Newcastle Disease Virus (NDV) is a single-stranded, negative-sense enveloped RNA virus (Fam. Paramyxoviridae; Order Mononegavirales). In the present study three monoclonal antibodies (MAbs) were produced by polyethyleneglycol (PEG)-mediated fusion of lymphocytes sensitized to NDV Bareilly strain and myeloma cells. NDV possesses ability to agglutinate erythrocytes of avian species. All the three MAbs designated as 2H7, 3E9 and 3G6 caused hemagglutination inhibition of NDV by specifically binding to NDV. The reactivity for all the 3 MAbs on indirect ELISA was found to be significantly higher than the antibody and antigen controls. On flowcytometry of HeLa cells infected with NDV using the MAbs as primary antibodies, there was a significant difference in the percentage of cells showing positive fluorescence compared to the mock control. One of the MAbs (3E9) was found to react with hemagglutinin-neuraminidase (HN) protein on western blot.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Newcastle disease virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Enzyme-Linked Immunosorbent Assay , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...