Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068582

ABSTRACT

The genus Amorphophallus belongs to the family Araceae. Plants belonging to this genus are available worldwide and have been used in traditional medicines since ancient times, mainly in Ayurveda and Unani medical practices. Amorphophallus species are an abundant source of polyphenolic compounds; these are accountable for their pharmacological properties, such as their analgesic, neuroprotective, hepatoprotective, anti-inflammatory, anticonvulsant, antibacterial, antioxidant, anticancer, antiobesity, and immunomodulatory effects, as well as their ability to prevent gastrointestinal disturbance and reduce blood glucose. Moreover, Amorphophallus species contain numerous other classes of chemical compounds, such as alkaloids, steroids, fats and fixed oils, tannins, proteins, and carbohydrates, each of which contributes to the pharmacological effects for the treatment of acute rheumatism, tumors, lung swelling, asthma, vomiting, abdominal pain, and so on. Additionally, Amorphophallus species have been employed in numerous herbal formulations and pharmaceutical applications. There has been no extensive review conducted on the Amorphophallus genus as of yet, despite the fact that several experimental studies are being published regularly discussing these plants' pharmacological properties. So, this review discusses in detail the pharmacological properties of Amorphophallus species. We also discuss phytochemical constituents in the Amorphophallus species and their ethnomedicinal uses and toxicological profiles.

2.
Chin Med ; 18(1): 154, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001538

ABSTRACT

Honokiol is a neolignan biphenol found in aerial parts of the Magnolia plant species. The Magnolia plant species traditionally belong to China and have been used for centuries to treat many pathological conditions. Honokiol mitigates the severity of several pathological conditions and has the potential to work as an anti-inflammatory, anti-angiogenic, anticancer, antioxidant, and neurotherapeutic agent. It has a long history of being employed in the healthcare practices of Southeast Asia, but in recent years, a greater scope of research has been conducted on it. Plenty of experimental evidence suggests it could be beneficial as a neuroprotective bioactive molecule. Honokiol has several pharmacological effects, leading to its exploration as a potential therapy for neurological diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, spinal cord injury, and so on. So, based on the previous experimentation reports, our goal is to discuss the neuroprotective properties of honokiol. Besides, honokiol derivatives have been highlighted recently as possible therapeutic options for NDs. So, this review focuses on honokiol's neurotherapeutic actions and toxicological profile to determine their safety and potential use in neurotherapeutics.

3.
Gels ; 9(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623124

ABSTRACT

Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.

4.
Brain Sci ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979267

ABSTRACT

Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...