Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 176(3): 369-385, 2019 02.
Article in English | MEDLINE | ID: mdl-30374952

ABSTRACT

BACKGROUND AND PURPOSE: Previous studies have shown that Creosote bush-derived nordihydroguaiaretic acid (NDGA) exerts beneficial actions on the key components of metabolic syndrome including dyslipidaemia, insulin resistance and hypertension in several relevant rodent models. Here, we synthesized and screened a total of 6 anti-hyperlipidaemic analogues of NDGA and tested their efficacy against hepatic lipid metabolism in a high-fructose diet (HFrD) fed dyslipidaemic rat model. EXPERIMENTAL APPROACH: HFrD fed Sprague-Dawley rats treated with NDGA or one of the six analogues were used. Serum samples were analysed for blood metabolites, whereas liver samples were quantified for changes in various mRNA levels by real-time RT-PCR. KEY RESULTS: Oral gavage of HFrD-fed rats for 4 days with NDGA analogues 1 and 2 (100 mg·kg-1 ·day-1 ) suppressed the hepatic triglyceride content, whereas the NDGA analogues 2, 3 and 4, like NDGA, decreased the plasma triglyceride levels by 70-75%. qRT-PCR measurements demonstrated that among NDGA analogues 1, 2, 4 and 5, analogue 4 was the most effective at inhibiting the mRNA levels of some key enzymes and transcription factors involved in lipogenesis. All four analogues almost equally inhibited the key genes involved in triglyceride synthesis and fatty acid elongation. Unlike NDGA, none of the analogues affected the genes of hepatic fatty acid oxidation or transport. CONCLUSIONS AND IMPLICATIONS: Our data suggest that NDGA analogues 1, 2, 4 and 5, particularly analogue 4, exert their anti-hyperlipidaemic actions by negatively targeting genes of key enzymes and transcription factors involved in lipogenesis, triglyceride synthesis and fatty acid elongation. These analogues have therapeutic potential.


Subject(s)
Hyperlipidemias/drug therapy , Hypolipidemic Agents/pharmacology , Masoprocol/pharmacology , Animals , Hypolipidemic Agents/chemistry , Male , Masoprocol/analogs & derivatives , Masoprocol/chemistry , Molecular Docking Simulation , Molecular Structure , Rats , Rats, Sprague-Dawley
2.
Anesth Essays Res ; 12(1): 190-193, 2018.
Article in English | MEDLINE | ID: mdl-29628580

ABSTRACT

AIMS: Dexmedetomidine is very dynamic drug, used for analgesia, sedation, blunting the laryngoscopic responses and as adjuvants in regional anesthesia. Studies have shown that intravenous (iv) dexmedetomidine given during spinal anesthesia increases the quality of subarachnoid block (SAB). In this study, we compare the two iv regimen of dexmedetomidine on analgesic effect of spinal anesthesia. One is bolus dose of dexmedetomidine and other is infusion during the surgery, both given after induction of spinal anesthesia. SUBJECTS AND METHODS: Sixty American Society of Anesthesiologists I and II patients scheduled to undergo surgeries under SAB were randomly allocated into two groups namely B and I. After SAB with 3.0 ml of bupivacaine 0.5% heavy, Group B received 0.5 µg/kg of dexmedetomidine bolus over 15 min, Group I received 0.5 µg/kg/h of dexmedetomidine infusion until the end of surgery. STATISTICAL ANALYSIS USED: All parametric data were statistically analyzed using Student's t-test and nonparametric data analyzed using Chi-square test and Fischer exact test as appropriate. P < 0.05 was considered as statistically significant. Statistical analysis was performed using the SPSS. RESULTS: Time to reach desired level T10 was quick in Group B compared to Group I. Regression of sensory and motor was prolonged in Group I compared to Group B. Total duration of analgesia was significantly prolonged in Group I 230.39 ± 16.20 compared to Group B 196.01 ± 14.32 and the difference is statistically significant (P = 0.0001). Both groups had Ramsay sedation score of 3 which lasted for 45 min in Group B while it was maintained in Group I. Side effects profile of both groups was comparable with few incidence of bradycardia and hypotension in both groups requiring treatment. CONCLUSIONS: We conclude that the continuous infusion of dexmedetomidine after SAB results in prolonged analgesia than just a bolus dose. Therefore, we suggest use of the maintenance dose of iv dexmedetomidine after SAB for prolonging the duration and achieving adequate sedation.

3.
J Cell Biochem ; 119(4): 3598-3607, 2018 04.
Article in English | MEDLINE | ID: mdl-29231267

ABSTRACT

PACT is a stress-modulated activator of protein kinase PKR (protein kinase, RNA activated), which is involved in antiviral innate immune responses and stress-induced apoptosis. Stress-induced phosphorylation of PACT is essential for PACT's increased association with PKR leading to PKR activation, phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. PACT-induced PKR activation is negatively regulated by TRBP (transactivation response element RNA-binding protein), which dissociates from PACT after PACT phosphorylation in response to stress signals. The conserved double-stranded RNA binding motifs (dsRBMs) in PKR, PACT, and TRBP mediate protein-protein interactions, and the stress-dependent phosphorylation of PACT changes the relative strengths of PKR-PACT, PACT-TRBP, and PACT-PACT interactions to bring about a timely and transient PKR activation. This regulates the general kinetics as well as level of eIF2α phosphorylation, thereby influencing the cellular response to stress either as recovery and survival or elimination by apoptosis. In the present study, we evaluated the effect of specific mutations within PACT's two evolutionarily conserved dsRBMs on dsRNA-binding, and protein-protein interactions between PKR, PACT, and TRBP. Our data show that the two motifs contribute to varying extents in dsRNA binding, and protein interactions. These findings indicate that although the dsRBM motifs have high sequence conservation, their functional contribution in the context of the whole proteins needs to be determined by mutational analysis. Furthermore, using a PACT mutant that is deficient in PACT-PACT interaction but competent for PACT-PKR interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.


Subject(s)
Double-Stranded RNA Binding Motif/physiology , RNA, Double-Stranded/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , COS Cells , Chlorocebus aethiops , Double-Stranded RNA Binding Motif/genetics , HeLa Cells , Humans , Phosphorylation/genetics , Phosphorylation/physiology , Protein Binding/genetics , Protein Binding/physiology , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Two-Hybrid System Techniques , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
4.
Nucleic Acids Res ; 46(2): 792-803, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29216382

ABSTRACT

CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , DNA Cleavage , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Base Sequence , Binding Sites/genetics , Humans , K562 Cells , Phosphonoacetic Acid/chemistry , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism
5.
PLoS One ; 10(9): e0138203, 2015.
Article in English | MEDLINE | ID: mdl-26394137

ABSTRACT

Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote bush, has been shown to have profound effects on the core components of the metabolic syndrome (MetS), lowering blood glucose, free fatty acids (FFA) and triglyceride (TG) levels in several models of dyslipidemia, as well as improving body weight (obesity), insulin resistance, diabetes and hypertension, and ameliorating hepatic steatosis. In the present study, a high-fructose diet (HFrD) fed rat model of hypertriglyceridemia was employed to further delineate the underlying mechanism by which NDGA exerts its anti-hypertriglyceridemic action. In the HFrD treatment group, NDGA administration by oral gavage decreased plasma levels of TG, glucose, FFA, and insulin, increased hepatic mitochondrial fatty acid oxidation and attenuated hepatic TG accumulation. qRT-PCR measurements indicated that NDGA treatment increased the mRNA expression of key fatty acid transport (L-FABP, CD36), and fatty acid oxidation (ACOX1, CPT-2, and PPARα transcription factor) genes and decreased the gene expression of enzymes involved in lipogenesis (FASN, ACC1, SCD1, L-PK and ChREBP and SREBP-1c transcription factors). Western blot analysis indicated that NDGA administration upregulated hepatic insulin signaling (P-Akt), AMPK activity (P-AMPK), MLYCD, and PPARα protein levels, but decreased SCD1, ACC1 and ACC2 protein content and also inactivated ACC1 activity (increased P-ACC1). These findings suggest that NDGA ameliorates hypertriglyceridemia and hepatic steatosis primarily by interfering with lipogenesis and promoting increased channeling of fatty acids towards their oxidation.


Subject(s)
Fatty Liver/prevention & control , Gene Expression Regulation/drug effects , Hypertriglyceridemia/prevention & control , Larrea/chemistry , Lipid Metabolism/genetics , Liver/drug effects , Masoprocol/pharmacology , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Blotting, Western , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Liver/blood , Fatty Liver/chemically induced , Fructose/administration & dosage , Fructose/toxicity , Hypertriglyceridemia/blood , Hypertriglyceridemia/chemically induced , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Male , PPAR alpha/genetics , PPAR alpha/metabolism , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
6.
J Cell Biochem ; 113(8): 2754-64, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22473766

ABSTRACT

PKR (protein kinase, RNA activated) is an interferon (IFN)-induced serine-threonine protein kinase and is one of the key mediators in IFN's cellular actions. Although double-stranded (ds) RNA is the most relevant PKR activator during viral infections, PACT acts as a stress-modulated activator of PKR and is an important regulator of PKR dependent signaling pathways in the absence of viral infections. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In the present study, we have investigated the functional significance of PACT-PACT interaction in mediating PKR activation in response to cellular stress. Our results suggest that enhanced interaction between PACT molecules when PACT is phosphorylated in response to stress signals on serines 246 and 287 is essential for efficient PKR activation. Using a point mutant of PACT that is deficient in PACT-PACT interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.


Subject(s)
RNA-Binding Proteins/metabolism , eIF-2 Kinase/metabolism , HeLa Cells , Humans , Immunoprecipitation , Phosphorylation , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology , Two-Hybrid System Techniques
7.
Biochemistry ; 50(21): 4550-60, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21526770

ABSTRACT

PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.


Subject(s)
HIV-1/metabolism , RNA-Binding Proteins/metabolism , Viral Proteins/metabolism , eIF-2 Kinase/metabolism , Base Sequence , DNA Primers , Enzyme Activation , HeLa Cells , Humans , Phosphorylation , Protein Binding , Two-Hybrid System Techniques
8.
J Mol Biol ; 385(2): 457-68, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19007793

ABSTRACT

Cellular stresses such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds result in accumulation of misfolded proteins in the endoplasmic reticulum (ER) and lead to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis. In this study, we examined the involvement of double-stranded RNA (dsRNA)-activated protein kinase (PKR) and its protein activator PACT in tunicamycin-induced apoptosis. We demonstrate for the first time that PACT is phosphorylated in response to tunicamycin and is responsible for PKR activation by direct interaction. Furthermore, PACT-induced PKR activation is essential for tunicamycin-induced apoptosis, since PACT as well as PKR null cells are markedly resistant to tunicamycin and show defective eIF2alpha phosphorylation and C/EBP homologous protein (CHOP, also known as GADD153) induction especially at low concentrations of tunicamycin. Reconstitution of PKR and PACT expression in the null cells renders them sensitive to tunicamycin, thus demonstrating that PACT-induced PKR activation plays an essential function in induction of apoptosis.


Subject(s)
Apoptosis , Carrier Proteins/metabolism , Enzyme Inhibitors/pharmacology , Tunicamycin/pharmacology , eIF-2 Kinase/metabolism , Animals , Cell Line , Genetic Complementation Test , Mice , Phosphorylation , Protein Binding , eIF-2 Kinase/deficiency
9.
Mol Cell Biol ; 29(1): 254-65, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18936160

ABSTRACT

The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTDelta13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTDelta13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTDelta13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2(-/-) murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.


Subject(s)
RNA-Binding Proteins/metabolism , Stress, Physiological , eIF-2 Kinase/metabolism , Animals , Antigens, Polyomavirus Transforming/genetics , Astrocytes/drug effects , Astrocytes/enzymology , Cell Line , Enzyme Activation/drug effects , HIV Long Terminal Repeat/genetics , Humans , Interferons/pharmacology , Mice , Phosphorylation/drug effects , Promoter Regions, Genetic , Protein Binding/drug effects , RNA Interference/drug effects , Sequence Deletion , Stress, Physiological/drug effects
10.
Biochem Biophys Res Commun ; 340(2): 726-33, 2006 Feb 10.
Article in English | MEDLINE | ID: mdl-16389071

ABSTRACT

The sodium-selective amiloride-sensitive epithelial sodium channel (ENaC) mediates electrogenic sodium re-absorption in tight epithelia. ENaC expression at the plasma membrane requires regulated transport, processing, and macromolecular assembly of subunit proteins in a defined and highly compartmentalized manner. Ras-related Rab GTPases monitor these processes in a highly regulated sequence of events. In order to evaluate the role of Rab proteins in ENaC function, Rab4 wild-type (WT), the GTPase-deficient mutant Rab4Q67L, and the dominant negative GDP-locked mutant Rab4S22N were over-expressed in the colon cancer cell line, HT-29 and amiloride-sensitive currents were recorded. Rab4 over-expression inhibited amiloride-sensitive currents. The effect was reversed by introducing Rab4-neutralizing antibody and Rab4 specific SiRNA. The GDP-locked Rab4 mutant inhibited, while GTPase-deficient mutant moderately stimulated amiloride-sensitive currents. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. Immunoprecipitation and pull-down assay suggest protein-protein interaction between Rab4 and ENaC. In addition, the functional modulation coincides with concomitant changes in ENaC expression at the cell surface and in intracellular pool. We propose that Rab4 is a critical element that regulates ENaC function by mechanisms that include GTP-GDP status, recycling, and expression level. Our observations imply that channel expression in apical membranes of epithelial cell system incorporates RabGTPase as an essential determinant of channel function and adds an exciting paradigm to ENaC therapeutics.


Subject(s)
Colon/metabolism , Intestinal Mucosa/metabolism , Sodium Channels/metabolism , rab4 GTP-Binding Proteins/physiology , Amiloride/pharmacology , Cell Membrane/metabolism , Colon/drug effects , Down-Regulation , Epithelial Sodium Channels , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , HT29 Cells , Humans , Intestinal Mucosa/drug effects , Sodium Channel Blockers/pharmacology , Sodium Channels/physiology
11.
Int J Biol Sci ; 3(1): 47-56, 2006 Nov 06.
Article in English | MEDLINE | ID: mdl-17200691

ABSTRACT

The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both gammaENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions.


Subject(s)
Amiloride/pharmacology , Epithelial Sodium Channels/drug effects , Epithelial Sodium Channels/metabolism , Syntaxin 1/physiology , Biotinylation , Chromones/pharmacology , Colon/cytology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Exocytosis/drug effects , Flavonoids/pharmacology , HT29 Cells , Humans , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Syntaxin 1/chemistry , Syntaxin 1/genetics , Syntaxin 1/metabolism
12.
Biochem Biophys Res Commun ; 337(4): 1219-23, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16236259

ABSTRACT

ENaC, the sodium-selective amiloride-sensitive epithelial channel, mediates electrogenic sodium re-absorption in tight epithelia and is deeply associated with human hypertension. The ENaC expression at plasma membrane requires the regulated transport, processing, and macromolecular assembly in a defined and highly compartmentalized manner. Ras-related Rab GTPases regulate intracellular trafficking during endocytosis, regulated exocytosis, and secretion. To evaluate the role of these proteins in regulating amiloride-sensitive sodium channel activity, multiple Rab isoforms 3, 5, 6, and Rab27a were expressed in HT-29 cells. Rab3 and Rab27a inhibited ENaC currents, while the expression of other Rab isoforms failed to elicit any statistically significant effect on amiloride-sensitive currents. The immunoprecipitation experiments suggest protein-protein interaction of Rab3 and Rab27a with epithelial sodium channel. Biotinylation studies revealed that modulation of ENaC function is due to the reduced apical expression of channel proteins. Study also indicates that Rabs do not appear to affect the steady-state level of total cellular ENaC. Alternatively, introduction of isoform-specific small inhibitory RNA (SiRNA) reversed the Rab-dependent inhibition of amiloride-sensitive currents. These observations point to the involvement of multiple Rab proteins in ENaC transport through intracellular routes like exocytosis, recycling from ER to plasma membrane or degradation and thus serve as potential target for human hypertension.


Subject(s)
Colonic Neoplasms/metabolism , Sodium Channels/metabolism , rab GTP-Binding Proteins/metabolism , Amiloride/pharmacology , Biotinylation , Colonic Neoplasms/pathology , Epithelial Sodium Channels , Gene Expression Regulation , HT29 Cells , Humans , Ion Channel Gating/drug effects , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , rab GTP-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...