Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(21): 6320-6329, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38701381

ABSTRACT

In an attempt to optimize the upconversion luminescence (UCL) output of a Nd3+-sensitized near-infrared (808 nm) upconverting core-shell (CS) nanocrystal through deliberate incorporation of lattice defects, a comprehensive analysis of microstrain both at the CS interface and within the core layer was performed using integral breadth calculation of high-energy synchrotron X-ray (λ = 0.568551 Å) diffraction. An atomic level interpretation of such microstrain was performed using pair distribution function analysis of the high-energy total scattering. The core NC developed compressive microstrain, which gradually transformed into tensile microstrain with the growth of the epitaxial shell. Such a reversal was rationalized in terms of a consistent negative lattice mismatch. Upon introduction of lattice defects into the CS systems upon incorporation of Li+, the corresponding UCL intensity was maximized at some specific Li+ incorporation, where the tensile microstrain of CS, compressive microstrain of the core, and atomic level disorders exhibited their respective extreme values irrespective of the activator ions.

2.
ACS Appl Mater Interfaces ; 14(17): 19579-19593, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35442621

ABSTRACT

The full-Heusler (FH) inclusions in the half-Heusler (HH) matrix is a well-studied approach to reduce the lattice thermal conductivity of ZrNiSn HH alloy. However, excess Ni in ZrNiSn may lead to the in situ formation of FH and/or HH alloys with interstitial Ni defects. The excess Ni develops intermediate electronic states in the band gap of ZrNiSn and also generates defects to scatter phonons, thus providing additional control to tailor electronic and phonon transport properties synergistically. In this work, we present the implication of isoelectronic Ge-doping and excess Ni on the thermoelectric transport of ZrNiSn. The synthesized ZrNi1.04Sn1-xGex (x = 0-0.04) samples were prepared by arc-melting and spark plasma sintering, and were extensively probed for microstructural analysis. The in situ evolution of minor secondary phases, i.e., FH, Ni-Sn, and Sn-Zr, primarily observed post sintering resulted in simultaneous optimization of the electrical power factor and lattice thermal conductivity. A ZT of ∼1.06 at ∼873 K was attained, which is among the highest for Hf-free ZrNiSn-based HH alloys. Additionally, ab initio calculations based on density functional theory (DFT) were performed to provide comparative insights into experimentally measured properties and understand underlying physics. Further, mechanical properties were experimentally extracted to determine the usability of synthesized alloys for device fabrication.

3.
RSC Adv ; 11(45): 28097-28105, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480750

ABSTRACT

The present finding illuminates the physics of the formation of interfaces of metal based hetero-structures near layer continuous limit as an approach to develop high-efficiency W/B4C multilayer (ML) optics with ML periodicity varying d = 1.86-1.23 nm at a fixed number of layer pairs N = 400. The microstructure of metal layers is tailored near the onset of grain growth to control the surface density of grains resulting in small average sizes of grains to sub-nanometers. This generates concurrently desirable atomically sharp interfaces, high optical contrast, and desirable stress properties over a large number of periods, which have evidence through the developed ML optics. We demonstrate significantly high reflectivities of ML optics measured in the energy range 10-20 keV, except for d = 1.23 nm due to quasi-continuous layers. The reflectivities at soft gamma-rays are predicted.

SELECTION OF CITATIONS
SEARCH DETAIL
...