Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann 3D Print Med ; 11: None, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37592961

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is a noticeable spinal deformity in both adult and adolescent population. In majority of the cases, the gold standard of treatment is surgical intervention. Technological advancements in medical imaging and 3D printing have revolutionised the surgical planning and intraoperative decision making for surgeons in spinal surgery. However, its applicability for planning complex spinal surgeries is poorly documented with human subjects. The objective of this study is to evaluate the accuracy of 3D printed models for complex spinal deformities based on Cobb angles between 40° to 95°.This is a retrospective cohort study where, five CT scans of the patients with AIS were segmented and 3D printed for evaluating the accuracy. Consideration was given to the Inter-patient and acquisition apparatus variability of the CT-scan dataset to understand the effect on trueness and accuracy of the developed CAD models. The developed anatomical models were re-scanned for analysing quantitative surface deviation to assess the accuracy of 3D printed spinal models. Results show that the average of the root mean square error (RMSE) between the 3DP models and virtual models developed using CT scan of mean surface deviations for the five 3d printed models was found to be 0.5±0.07 mm. Based on the RMSE, it can be concluded that 3D printing based workflow is accurate enough to be used for presurgical planning for complex adolescent spinal deformities. Image acquisition and post processing parameters, type of 3D printing technology plays key role in acquiring required accuracy for surgical applications.

2.
Spine J ; 19(1): 56-64, 2019 01.
Article in English | MEDLINE | ID: mdl-29730456

ABSTRACT

BACKGROUND CONTEXT: Spinal deformities are very challenging to treat and have a great risk of neurologic complications because of hardware placement during corrective surgery. Various techniques have been introduced to ensure safe and accurate placement of pedicle screws. Patient-specific screw guides with predrawn and prevalidated trajectory seem to be an attractive option. PURPOSE: We have focused on developing three-dimensional (3D) printing technique for complex spinal deformities in India. This study also aimed to compare the placement of pedicle screw with 3D printing and freehand technique. STUDY DESIGN/SETTINGS: This is a retrospective comparative clinical study in an academic institutional setting. PATIENT SAMPLE: A total of 20 patients were enrolled during the study: 10 were operated on with the help of 3D printing (Group 1) and 10 were operated on with freehand technique (Group 2). Group 1 included six patients with congenital scoliosis, three patients with adolescent idiopathic scoliosis (AIS), and one patient with post-tubercular kyphosis, and Group 2 included five patients with congenital scoliosis, four patients with AIS, and one patient with post-tubercular kyphosis. OUTCOME MEASURES: Primary outcomes were measured in terms of screw violation, and secondary outcomes were measured in terms of surgical time, blood loss, radiation exposure (number of shoots required), and complications. MATERIALS AND METHODS: MIMICS Base v18.0 software was used for 3D reconstruction from computed tomography scan images of all the patients. 3-Matic software was used to create a drill guide. A 3D printer from Stratasys Mojo with ABS P430 model material cartilage (a thermoplastic material) was used for the printing of the vertebra model and jigs. A two-sample test of proportion was used to compare correctly and wrongly placed pedicle screws with 3D printing and freehand technique. t Test with equal variance was used for operating surgical time and blood loss. RESULTS: No superior or inferior screw violation was observed in any of our patients in either group. We found a significant difference (p=.03) between the two groups regarding perfect screw placement in favor of 3D printing. There were 13 Grade 2 medial perforations in the freehand group and 3 in the 3D printing group. There was no Grade 3 medial perforation in either group. Six Grade 2 lateral perforations in the freehand group and seven in the 3D printing group were observed. Three Grade 3 lateral perforations in the freehand group and two in 3D printing group were observed. Analysis showed a statistically significant (p=.005) medial violation in the freehand group. Surgical time was significantly less (p=.03) in the 3D printing group compared with the freehand group. Mean blood loss was higher in the freehand group but was not statistically significant (p=.3) in the 3D printing group. Fluoroscopic shots required were less in number in the 3D printing group compared with the freehand group. There was no neurologic deficit in any of the patients in the two groups. CONCLUSIONS: In our study, focusing on spinal deformities with statistically significant higher rates of accurate screw positioning and higher numbers of inserted screws with 3D printing was possible because of enhanced safety, particularly at apical levels. As such, spinal deformities are difficult to treat worldwide. In India, these deformities are often neglected and present at a very late and a much more deformed state when their treatment becomes even more challenging. Developing these patient-specific drill templates will enable an average spine surgeon to treat these patients with much ease and safety.


Subject(s)
Patient-Specific Modeling , Pedicle Screws/adverse effects , Postoperative Complications/epidemiology , Printing, Three-Dimensional , Spinal Curvatures/surgery , Spinal Fusion/methods , Adolescent , Female , Humans , Male , Spinal Curvatures/diagnostic imaging , Spinal Fusion/adverse effects , Spinal Fusion/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...