Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963166

ABSTRACT

Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.

3.
J Pharmacol Toxicol Methods ; 98: 106592, 2019.
Article in English | MEDLINE | ID: mdl-31154035

ABSTRACT

PURPOSE: To standardize a new method for assessing cataractogenesis in isolated cultured bovine lenses using L-cysteine as the standard anti-cataract agent. METHODS: Intact bovine lenses were cultured in DMEM with L-cysteine in presence or absence of hydrogen peroxide (H2O2). Lens opacity (transmittance) was determined using a plate reader. Lens homogenate glutathione (GSH) and superoxide dismutase (SOD) contents were measured using enzyme immunoassays kits. RESULTS: DMEM-cultured lenses exhibited a time-dependent loss in transmittance (230-710 nm) up to 120 h, achieving the highest reduction of 38.6 ±â€¯0.09% at 420 nm (p < .001;n = 12). Compared to untreated lenses (time in hours [t] = 0), L-cysteine (10-6 M and 10-5 M) significantly (p < .001;n = 6) increased time-dependent transmittance (420 nm) by 31.6 ±â€¯0.17% and 28.0 ±â€¯0.07%(t = 120), respectively. When compared to DMEM-cultured lenses (t = 0), H2O2 (10 mM, 50 mM and 100 mM) significantly (p < .001;n = 12) reduced transmittance by 57.8 ±â€¯0.1, 57.4 ±â€¯0.04 and 87.7 ±â€¯0.6%(t = 120), respectively. Moreover, L-cysteine significantly (p < .001;n = 6) attenuated H2O2 (50 mM)-induced decrease in transmittance by 12.5 ±â€¯0.05%(10-6 M), 13.0 ±â€¯0.09%(10-5 M), 14.5 ±â€¯0.08%(10-4 M) and 8.6 ±â€¯0.11%(10-3 M)(t = 120), respectively. When compared to untreated lenses (t = 0), the time-dependent decrease (p < .001;n = 5) in lenticular total GSH content and total SOD activity of 46.1 ±â€¯0.06% and 42.0 ±â€¯1.65% (t = 120) was attenuated (p < .001;n = 5) by L-cysteine (10-6 M) by 76.6 ±â€¯0.06% and 7.4 ±â€¯1.98%, respectively. Similarly, the H2O2(50 mM)-induced decline (p < .001; n = 5) in total GSH content and SOD activity of 82.6 ±â€¯0.08% and 86.6 ±â€¯0.66% (t = 120) was attenuated by L-cysteine (10-4 M) by 74.7 ±â€¯1.05% and 161.1 ±â€¯4.9%, respectively. CONCLUSION: Measurement of spectral transmission coupled with assessment of the activity of antioxidant enzymes in bovine cultured lens can provide a useful tool in studies of cataracts in an animal model of this disease.


Subject(s)
Cataract/pathology , Lens, Crystalline/pathology , Animals , Antioxidants/metabolism , Cataract/chemically induced , Cataract/metabolism , Cattle , Cysteine/metabolism , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Lens, Crystalline/drug effects , Lens, Crystalline/metabolism , Oxidative Stress/drug effects , Reference Standards , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...