Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3823, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714643

ABSTRACT

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA/genetics , RNA/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
2.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961497

ABSTRACT

Natural products (NPs) produced by bacteria, fungi and plants are a major source of drug leads. Streptomyces species are particularly important in this regard as they produce numerous natural products with prominent bioactivities. Here we report a fully a utomated, s calable and high-throughput platform for discovery of bioactive n atural p roducts in S treptomyces (FAST-NPS). This platform comprises computational prediction and prioritization of target biosynthetic gene clusters (BGCs) guided by self-resistance genes, highly efficient and automated direct cloning and heterologous expression of BGCs, followed by high-throughput fermentation and product extraction from Streptomyces strains. As a proof of concept, we applied this platform to clone 105 BGCs ranging from 10 to 100 kb that contain potential self-resistance genes from 11 Streptomyces strains with a success rate of 95%. Heterologous expression of all successfully cloned BGCs in Streptomyces lividans TK24 led to the discovery of 23 natural products from 12 BGCs. We selected 5 of these 12 BGCs for further characterization and found each of them could produce at least one natural product with antibacterial and/or anti-tumor activity, which resulted in a total of 8 bioactive natural products. Overall, this work would greatly accelerate the discovery of bioactive natural products for biomedical and biotechnological applications.

3.
iScience ; 26(10): 107739, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720088

ABSTRACT

Chemically modified mRNAs hold great potential for therapeutic applications in vivo. Currently, the base modification scheme largely preserves the canonical Watson-Crick base pairing, thus missing one mode of mRNA modulation by altering its secondary structure. Here we report the incorporation of base Z (2-aminoadenine) into mRNA to create Z-mRNA with improved translational capacity, decreased cytotoxicity, and drastically reduced immunogenicity compared to the unmodified mRNA in mammalian cells. In particular, the A-to-Z substitution renders modified mRNAs less immunogenic than the state-of-the-art base modification N1-methylpseudouridine (m1ψ) in mouse embryonic fibroblast cells. As a proof of concept, we developed a Z-mRNA-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antigen-encoding Z-mRNA elicited substantial humoral and cellular immune responses in vivo in mice, albeit with relatively lower efficacy than the state-of-the-art m1ψ-mRNA. Z-mRNA expands the scope of mRNA base modifications toward noncanonical bases and could offer an advantageous platform for mRNA-based therapeutics where minimal immunogenicity is desired.

4.
Cell Syst ; 14(8): 633-644, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37224814

ABSTRACT

Directed evolution has become one of the most successful and powerful tools for protein engineering. However, the efforts required for designing, constructing, and screening a large library of variants can be laborious, time-consuming, and costly. With the recent advent of machine learning (ML) in the directed evolution of proteins, researchers can now evaluate variants in silico and guide a more efficient directed evolution campaign. Furthermore, recent advancements in laboratory automation have enabled the rapid execution of long, complex experiments for high-throughput data acquisition in both industrial and academic settings, thus providing the means to collect a large quantity of data required to develop ML models for protein engineering. In this perspective, we propose a closed-loop in vitro continuous protein evolution framework that leverages the best of both worlds, ML and automation, and provide a brief overview of the recent developments in the field.


Subject(s)
Directed Molecular Evolution , Proteins , Proteins/metabolism , Protein Engineering , Automation , Machine Learning
5.
Nat Commun ; 13(1): 2697, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577775

ABSTRACT

Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high throughput manner. This platform consists of a most versatile DNA assembly method using Pyrococcus furiosus Argonaute (PfAgo)-based artificial restriction enzymes, a user-friendly frontend for plasmid design, and a backend that streamlines the workflow and integration with a robotic system. As a proof of concept, we used this platform to generate 101 plasmids from six different species ranging from 5 to 18 kb in size from up to 11 DNA fragments. PlasmidMaker should greatly expand the potential of synthetic biology.


Subject(s)
DNA , Pyrococcus furiosus , DNA/genetics , DNA Restriction Enzymes/genetics , Plasmids/genetics , Pyrococcus furiosus/genetics , Synthetic Biology/methods
6.
Nat Commun ; 12(1): 4339, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267198

ABSTRACT

Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employ a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates. Of 67 human PH domain-containing proteins initially examined, 36 (54%) are found to have affinity for PIPs with various specificity, the majority of which have not been reported before. Further investigation of ARHGEF3 reveals distinct structural requirements for its binding to PI(4,5)P2 and PI(3,5)P2, and functional relevance of its PI(4,5)P2 binding. We generate a recursive-learning algorithm based on the assay results to analyze the sequences of 242 human PH domains, predicting that 49% of them bind PIPs. Twenty predicted binders and 11 predicted non-binders are assayed, yielding results highly consistent with the prediction. Taken together, our findings reveal unexpected lipid-binding specificity of PH domain-containing proteins.


Subject(s)
Phosphatidylinositols/metabolism , Pleckstrin Homology Domains , Proteins/chemistry , Proteins/metabolism , Algorithms , Animals , Binding Sites , Computational Biology/methods , HEK293 Cells , Humans , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Phosphatidylinositols/chemistry , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Proteins/genetics , Rho Guanine Nucleotide Exchange Factors/chemistry , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Sensitivity and Specificity , rhoA GTP-Binding Protein/metabolism
8.
Cell Rep ; 34(1): 108594, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33406419

ABSTRACT

Skeletal muscle regeneration after injury is essential for maintaining muscle function throughout aging. ARHGEF3, a RhoA/B-specific GEF, negatively regulates myoblast differentiation through Akt signaling independently of its GEF activity in vitro. Here, we report ARHGEF3's role in skeletal muscle regeneration revealed by ARHGEF3-KO mice. These mice exhibit indiscernible phenotype under basal conditions. Upon acute injury, however, ARHGEF3 deficiency enhances the mass/fiber size and function of regenerating muscles in both young and regeneration-defective middle-aged mice. Surprisingly, these effects occur independently of Akt but via the GEF activity of ARHGEF3. Consistently, overexpression of ARHGEF3 inhibits muscle regeneration in a Rho-associated kinase-dependent manner. We further show that ARHGEF3 KO promotes muscle regeneration through activation of autophagy, a process that is also critical for maintaining muscle strength. Accordingly, ARHGEF3 depletion in old mice prevents muscle weakness by restoring autophagy. Taken together, our findings identify a link between ARHGEF3 and autophagy-related muscle pathophysiology.


Subject(s)
Autophagy , Muscle Strength , Muscle, Skeletal/metabolism , Regeneration , Rho Guanine Nucleotide Exchange Factors/physiology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Aging/metabolism , Animals , Cell Differentiation , Female , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
9.
Exp Cell Res ; 394(1): 112165, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32645396

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) is known to induce apoptosis in cancer cells, although non-apoptotic functions have also been reported for this cytokine in various cell types. TRAIL and its receptor TRAIL-R2 are expressed in skeletal muscles, but a potential role of muscle-derived TRAIL in myogenesis has not been explored. Here we report that TRAIL is an autocrine regulator of myogenic differentiation. Knockdown of TRAIL or TRAIL-R2 enhanced C2C12 myoblast differentiation, and recombinant TRAIL inhibited expression of the cell cycle inhibitor p21, accompanied by suppression of myoblasts from exiting the cell cycle, a requisite step in the myogenic differentiation process. Blocking cell cycle progression restored differentiation from inhibition by recombinant TRAIL, supporting the notion that TRAIL exerts its effect in myogenesis through modulating cell cycle exit. We also found that TRAIL knockdown led to enhanced muscle regeneration in mice upon injury, recapitulating the in vitro observation. Additionally, inhibition of ERK activation reversed the negative effect of recombinant TRAIL on p21 expression and myoblast differentiation, suggesting that ERK signaling may be a mediator of TRAIL's function to suppress cell cycle withdrawal and inhibit differentiation. Taken together, our findings uncover a muscle cell-autonomous non-apoptotic function of TRAIL in skeletal myogenesis.


Subject(s)
Apoptosis/physiology , Cell Differentiation/physiology , Muscle Development/physiology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Cell Cycle/physiology , Humans , Mice , Muscle, Skeletal/metabolism , Myoblasts/cytology , Signal Transduction/physiology
10.
Proc Natl Acad Sci U S A ; 115(39): E9125-E9134, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30194235

ABSTRACT

Signal transduction and cytoskeleton networks in a wide variety of cells display excitability, but the mechanisms are poorly understood. Here, we show that during random migration and in response to chemoattractants, cells maintain complementary spatial and temporal distributions of Ras activity and phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2]. In addition, depletion of PI(3,4)P2 by disruption of the 5-phosphatase, Dd5P4, or by recruitment of 4-phosphatase INPP4B to the plasma membrane, leads to elevated Ras activity, cell spreading, and altered migratory behavior. Furthermore, RasGAP2 and RapGAP3 bind to PI(3,4)P2, and the phenotypes of cells lacking these genes mimic those with low PI(3,4)P2 levels, providing a molecular mechanism. These findings suggest that Ras activity drives PI(3,4)P2 down, causing the PI(3,4)P2-binding GAPs to dissociate from the membrane, further activating Ras, completing a positive-feedback loop essential for excitability. Consistently, a computational model incorporating such a feedback loop in an excitable network model accurately simulates the dynamic distributions of active Ras and PI(3,4)P2 as well as cell migratory behavior. The mutually inhibitory Ras-PI(3,4)P2 mechanisms we uncovered here provide a framework for Ras regulation that may play a key role in many physiological processes.


Subject(s)
Cell Membrane/metabolism , Dictyostelium/metabolism , Phosphatidylinositol Phosphates/metabolism , Protozoan Proteins/metabolism , Signal Transduction/physiology , ras Proteins/metabolism , Cell Membrane/genetics , Dictyostelium/genetics , Phosphatidylinositol Phosphates/genetics , Protozoan Proteins/genetics , ras Proteins/genetics
11.
Article in English | MEDLINE | ID: mdl-28775895

ABSTRACT

Skeletal muscle in adults retains a robust ability to regenerate after injury, which progressively declines with age. Many of the regulators of skeletal myogenesis are unknown or incompletely understood. Intriguingly, muscle cells secrete a wide variety of factors, such as cytokines, which can influence muscle development and regeneration in an autocrine or paracrine manner. Here we describe chemokine (C-X-C motif) ligand 14 (Cxcl14) as a novel negative regulator of skeletal myogenesis. We found that Cxcl14 expression in myoblasts prevented cell cycle withdrawal, thereby inhibiting subsequent differentiation. Knockdown of Cxcl14 in vitro enhanced myogenic differentiation through promoting cell cycle withdrawal in an ERK1/2-dependent manner. Recapitulating these in vitro observations, the process of muscle regeneration following injury in young adult mice was accelerated by Cxcl14 depletion, accompanied by reduced cell proliferation. Furthermore, impaired capacity for muscle regeneration in aging mice was fully restored by Cxcl14 depletion. Our results indicate that Cxcl14 may be a promising target for development of therapeutics to treat muscle disease, especially aging-related muscle wasting.

SELECTION OF CITATIONS
SEARCH DETAIL
...