Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38659259

ABSTRACT

Brain-related disorders include neuroinflammation, neurodegenerative disorders, and demyelination, which ultimately affect the quality of life of patients. Currently, brain-related disorders represent the most challenging health problem worldwide due to complex pathogenesis and limited availability of drugs for their management. Further, the available pharmacotherapy accompanies serious side effects, therefore, much attention has been directed toward the development of alternative therapy derived from natural sources to treat such disorders. Recently, flavonoids, natural phytochemicals, have been reported as a treatment option for preventing brain aging and disorders related to this. Among these flavonoids, dietary luteolin, a flavone, is found in many plant products such as broccoli, chamomile tea, and honeysuckle bloom having several pharmacological properties including neuroprotective activities. Therefore, the objective of this paper is to compile the available literature regarding the neuroprotective potential of luteolin and its mechanism of action. Luteolin exerts notable anti-inflammatory, antioxidant, and antiapoptotic activity suggesting its therapeutic efficacy in different neurological disorders. Numerous in-vivo and in-vitro experiments have revealed that luteolin exhibits neuroprotective potential via up-regulating the ER/ERK, PI3AKT, Nrf2 pathways and down-regulating the MAPK/JAK2STAT and NFκB pathways. Taking into account of available facts regarding the neuroprotective efficacy of luteolin, the current study highlights the beneficial effects of luteolin for the prevention, management, and treatment of different neurological disorders. Thus, luteolin can be considered an alternative for the development of new pharmacophores against various brain-related disorders.

2.
Nat Commun ; 14(1): 3539, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322224

ABSTRACT

Among the cues that a mosquito uses to find a host for blood-feeding, the smell of the host plays an important role. Previous studies have shown that host odors contain hundreds of chemical odorants, which are detected by different receptors on the peripheral sensory organs of mosquitoes. But how individual odorants are encoded by downstream neurons in the mosquito brain is not known. We developed an in vivo preparation for patch-clamp electrophysiology to record from projection neurons and local neurons in the antennal lobe of Aedes aegypti. Combining intracellular recordings with dye-fills, morphological reconstructions, and immunohistochemistry, we identify different sub-classes of antennal lobe neurons and their putative interactions. Our recordings show that an odorant can activate multiple neurons innervating different glomeruli, and that the stimulus identity and its behavioral preference are represented in the population activity of the projection neurons. Our results provide a detailed description of the second-order olfactory neurons in the central nervous system of mosquitoes and lay a foundation for understanding the neural basis of their olfactory behaviors.


Subject(s)
Aedes , Olfactory Receptor Neurons , Animals , Odorants , Olfactory Receptor Neurons/physiology , Olfactory Pathways/physiology , Smell/physiology , Aedes/physiology
3.
iScience ; 25(3): 103938, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35265812

ABSTRACT

Many experimental studies have examined behavioral and electrophysiological responses of mosquitoes to odors. However, the differences across studies in data collection, processing, and reporting make it difficult to perform large-scale analyses combining data from multiple studies. Here we extract and standardize data for 12 mosquito species, along with Drosophila melanogaster for comparison, from over 170 studies and curate the Mosquito Olfactory Response Ensemble (MORE), publicly available at https://neuralsystems.github.io/MORE. We demonstrate the ability of MORE in generating biological insights by finding patterns across studies. Our analyses reveal that ORs are tuned to specific ranges of several physicochemical properties of odorants; the empty-neuron recording technique for measuring OR responses is more sensitive than the Xenopus oocyte technique; there are systematic differences in the behavioral preferences reported by different types of assays; and odorants tend to become less attractive or more aversive at higher concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...