Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 49(1): 73-83, 2024.
Article in English | MEDLINE | ID: mdl-38828075

ABSTRACT

Background: Accurate dose measurements are difficult in small fields due to charge particle disequilibrium, partial source occlusion, steep dose gradient, and the finite size of the detector. Aim: The study aims to determine the output factor using various detectors oriented in parallel and perpendicular orientations for three different tertiary collimating systems using 15 MV photon beams. In addition, this study analyzes how the output factor could be affected by different configurations of X and Y jaws above the tertiary collimators. Materials and Methods: Small field output factor measurements were carried out with three detectors for different tertiary collimating systems such as BrainLab stereotactic cones, BrainLab mMLC and Millennium MLC namely. To analyze the effect of jaw position on output factor, measurements have been carried out by positioning the jaws at the edge, 0.25, 0.5, and 1.0 cm away from the tertiary collimated field. Results: The data acquired with 15 MV photon beams show significant differences in output factor obtained with different detectors for all collimating systems. For smaller fields when compared to microDiamond, the SRS diode underestimates the output by up to -1.7% ± 0.8% and -2.1% ± 0.3%, and the pinpoint ion chamber underestimates the output by up to -8.1% ± 1.4% and -11.9% ± 1.9% in their parallel and perpendicular orientation respectively. A large increase in output factor was observed in the small field when the jaw was moved 0.25 cm symmetrically away from the tertiary collimated field. Conclusion: The investigated data on the effect of jaw position inferred that the position of the X and Y jaw highly influences the output factors of the small field. It also confirms that the output factor highly depends on the configuration of X and Y jaw settings, the tertiary collimating system as well as the orientation of the detectors in small fields.

2.
Rep Pract Oncol Radiother ; 26(1): 93-100, 2021.
Article in English | MEDLINE | ID: mdl-34046219

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the feasibility of MOSFET dosimeter in measuring eye dose during 2D MV portal imaging for setup verification in radiotherapy. MATERIALS AND METHODS: The in-vivo dose measurements were performed by placing the dosimeters over the eyes of 30 brain patients during the acquisition of portal images in linear accelerator by delivering 1 MU with the field sizes of 10 × 10 cm2 and 15 × 15 cm2. RESULTS: The mean doses received by the left and right eyes of 10 out of 30 patients when both eyes were completely inside the anterior portal field were found to be 2.56 ± 0.2 cGy and 2.75 ± 0.2, respectively. Similarly, for next 10 patients out of the same 30 patients the mean doses to left and right eyes when both eyes were completely out of the anterior portal fields were found to be 0.13 ± 0.02 cGy and 0.17 ± 0.02 cGy, respectively. The mean doses to ipsilateral and contralateral eye for the last 10 patients when one eye was inside the anterior portal field were found to be 3.28 ± 0.2 cGy and 0.36 ± 0.1 cGy, respectively. CONCLUSION: The promising results obtained during 2D MV portal imaging using MOSFET have shown that this dosimeter is well suitable for assessing low doses during imaging thereby enabling to optimize the imaging procedure using the dosimetric data obtained. In addition, the documentation of the dose received by the patient during imaging procedure is possible with the help of an in-built software in conjunction with the MOSFET reader module.

3.
J Clin Diagn Res ; 9(4): TD05-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26023622

ABSTRACT

Glioblastoma Multiforme (GBM) is a high-grade brain tumour with the most dismal prognosis. There are very few reports on second malignancies occurring in GBM patients, as the survival has been short. Second malignancies have been reported after treatment of malignancies with radiation therapy and chemotherapy especially after 5 to 10 y of treatment. Here in, we present a very unique case where a patient succumbed to sinonasal carcinoma occurring one and half years after treatment of GBM. A 17-year-old boy was diagnosed to have GBM and underwent surgery followed by chemoradiation and adjuvant chemotherapy with Temozolamide. He presented with undifferentiated sinonasal carcinoma, in the sinonasal region outside the radiation field within two years of treatment. Here we discuss the histology and possible chances of it being a second malignancy.

4.
Clin Anat ; 28(4): 431-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25708008

ABSTRACT

Plastination is the art of preserving biological tissues with curable polymers. Imaging with plastinates offers a unique opportunity for radiographic, anatomical, pathological correlation to elucidate complex anatomical relationships. The aim of this study was to make plastinates from cadavers using the standard S-10 plastination technique and to compare the radiological properties of the tissue before and afterwards to examine the suitability of plastinates as phantoms for planning radiotherapy treatment. An above-diaphragm and a below-diaphragm specimen were obtained from a male and a female cadaver, respectively, and subjected to the standard S-10 plastination technique. CT images were obtained before and after plastination and were compared using Treatment Planning System for anatomical accuracy, volume of organs, and CT numbers. The plastinated specimens obtained were dry, robust, and durable. CT imaging of the plastinated specimens showed better anatomical detail of the organs than the preplastinate. Organ volumes were estimated by contouring the organs' outline in the CT images of the preplastinated and postplastinated specimens, revealing an average shrinkage of 25%. CT numbers were higher in the plastinated specimens except in bones and air-filled cavities such as the maxillary air sinus. Although plastination by the standard S-10 technique preserves anatomical accuracy, it increases the CT numbers of the organs because of the density of silicone, making it unsuitable for radiation dosimetry. Further improvements of the technique could yield more suitable plastinated phantoms.


Subject(s)
Cadaver , Plastic Embedding , Tomography, X-Ray Computed , Aged , Female , Humans , Male , Organ Size , Silicones
5.
J Appl Clin Med Phys ; 12(2): 3260, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21587166

ABSTRACT

The present study is aimed at determination of accuracy of relocation of Gill-Thomas-Cosman frame during fractionated stereotactic radiotherapy. The study aims to quantitatively determine the magnitudes of error in anteroposterior, mediolateral and craniocaudal directions, and determine the margin between clinical target volume to planning target volume based on systematic and random errors. Daily relocation error was measured using depth helmet and measuring probe. Based on the measurements, translational displacements in anteroposterior (z), mediolateral (x), and craniocaudal (y) directions were calculated. Based on the displacements in x, y and z directions, systematic and random error were calculated and three-dimensional radial displacement vector was determined. Systematic and random errors were used to derive CTV to PTV margin. The errors were within ± 2 mm in 99.2% cases in anteroposterior direction (AP), in 99.6% cases in mediolateral direction (ML), and in 97.6% cases in craniocaudal direction (CC). In AP, ML and CC directions, systematic errors were 0.56, 0.38, 0.42 mm and random errors were 1.86, 1.36 and 0.73 mm, respectively. Mean radial displacement was 1.03 mm ± 0.34. CTV to PTV margins calculated by ICRU formula were 1.86, 1.45 and 0.93 mm; by Stroom's formula they were 2.42, 1.74 and 1.35 mm; by van Herk's formula they were 2.7, 1.93 and 1.56 mm (AP, ML and CC directions). Depth helmet with measuring probe provides a clinically viable way for assessing the relocation accuracy of GTC frame. The errors were within ± 2 mm in all directions. Systematic and random errors were more along the anteroposterior axes. According to the ICRU formula, a margin of 2 mm around the tumor seems to be adequate.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Adolescent , Adult , Brain Neoplasms/radiotherapy , Child , Dose Fractionation, Radiation , Equipment Design , Female , Humans , Male , Meningioma/radiotherapy , Middle Aged , Models, Theoretical , Optic Nerve Glioma/radiotherapy , Pituitary Neoplasms/radiotherapy , Quality Control , Radiation Oncology/instrumentation , Radiotherapy Dosage , Reproducibility of Results , Stereotaxic Techniques/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...