Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202300511, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853143

ABSTRACT

The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. It is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.

2.
Mater Today Proc ; 62: 2878-2882, 2022.
Article in English | MEDLINE | ID: mdl-35251941

ABSTRACT

The coronavirus disease pandemic is considered at its worst and all nations are collectively fighting to improve global public health. In this outlook, polymers and their related materials (including plastics) are the primary sources in the manufacturing of medical and personal protective equipment. Plastics can be mass-produced, economical, and sterilized, which makes them an inevitable material in the medical and healthcare sector. Along with plastics, antibacterial and antiviral coatings, polymeric nanomaterials and nanocomposites, and functional polymers have become excellent materials for COIVD-19. This review centres on the applications of polymer materials in managing the COVID-19 outbreak. Moreover, the utilization of plastics with its healthcare applications are reviewed. Apart from this, major challenges and future directions of these materials have also been discussed. This review will help aspiring researchers to develop the basic understanding of polymeric materials currently employed in medical sector.

3.
Heliyon ; 6(7): e04487, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32743097

ABSTRACT

The hydrogen economy is the key solution to secure a long-term energy future. Hydrogen production, storage, transportation, and its usage completes the unit of an economic system. These areas have been the topics of discussion for the past few decades. However, its storage methods have conflicted for on-board hydrogen applications. In this review, the promising systems based on solid-state hydrogen storage are discussed. It works generally on the principles of chemisorption and physisorption. The usage of hydrogen packing material in the system enhances volumetric and gravimetric densities of the system and helps in improving ambient conditions and system kinetics. Numerous aspects like pore size, surface area ligand functionalization and pore volume of the materials are intensively discussed. This review also examines the newly developed research based on MOF (Metal-Organic Frameworks). These hybrid clusters are employed for nano-confinement of hydrogen at elevated temperatures. A combination of the various methodologies may give another course to a wide scope in the area of energy storage materials later in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...