Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 14(24): 5718-5726, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37318228

ABSTRACT

The photoexcitation of weakly bound complexes can lead to several decay pathways, depending on the nature of the potential energy surfaces. Upon excitation of a chromophore in a weakly bound complex, ionization of its neighbor upon energy transfer can occur due to a unique relaxation process known as intermolecular Coulombic decay (ICD), a phenomenon of renewed focus owing to its relevance in biological systems. Herein, we report the evidence for outer-valence ICD induced by multiphoton excitation by near-ultraviolet radiation of 4.4 eV photons, hitherto unknown in molecular systems. In the binary complexes of 2,6-difluorophenylacetylene with aliphatic amines, a resonant two-photon excitation localized on the 2,6-difluorophenylacetylene chromophore results in the formation of an amine cation following an outer-valence ICD process. The unique trends in experimentally observed translational energy distribution profiles of the amine cations following hydrogen bond dissociation, analyzed with the help of electronic structure and ab initio molecular dynamics calculations, revealed the presence of a delicate interplay of roaming dynamics, methyl-rotor dynamics, and binding energy.

2.
J Phys Chem B ; 127(17): 3888-3893, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37074739

ABSTRACT

The ability of an acid to undergo dissociation depends primarily on the nature of the solvent and especially the arrangement of the solvent molecules around the protic group. This process of acid dissociation can be promoted by confining the solute-solvent system to nanocavities. Endohedral confinement of HCl/HBr complexed with a single ammonia or a water dimer within the C60/C70 cage results in the dissociation of mineral acid. Such confinement bolsters the electric field along the H-X bond and consequently lowers the minimum number of solvent molecules required in the gas phase for the acid dissociation.

3.
Commun Biol ; 6(1): 195, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36807602

ABSTRACT

Type IA topoisomerases maintain DNA topology by cleaving ssDNA and relaxing negative supercoils. The inhibition of its activity in bacteria prevents the relaxation of negative supercoils, which in turn impedes DNA metabolic processes leading to cell death. Using this hypothesis, two bisbenzimidazoles, PPEF and BPVF are synthesized, selectively inhibiting bacterial TopoIA and TopoIII. PPEF stabilizes the topoisomerase and topoisomerase-ssDNA complex, acts as an interfacial inhibitor. PPEF display high efficacy against ~455 multi-drug resistant gram positive and negative bacteria. To understand molecular mechanism of inhibition of TopoIA and PPEF, accelerated MD simulation is carried out, and results suggested that PPEF binds, stabilizes the closed conformation of TopoIA with -6Kcal/mol binding energy and destabilizes the binding of ssDNA. The TopoIA gate dynamics model can be used as a tool to screen TopoIA inhibitors as therapeutic candidates. PPEF and BPVF cause cellular filamentation and DNA fragmentation leading to bacterial cell death. PPEF and BPVF show potent efficacy against systemic and neutropenic mouse models harboring E. coli, VRSA, and MRSA infection without cellular toxicity.


Subject(s)
DNA Topoisomerases, Type I , Escherichia coli , Animals , Mice , Escherichia coli/genetics , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Bisbenzimidazole , DNA , DNA, Single-Stranded
4.
J Biol Chem ; 298(8): 102208, 2022 08.
Article in English | MEDLINE | ID: mdl-35772496

ABSTRACT

Antibiotic resistance via epigenetic methylation of ribosomal RNA is one of the most prevalent strategies adopted by multidrug resistant pathogens. The erythromycin-resistance methyltransferase (Erm) methylates rRNA at the conserved A2058 position and imparts resistance to macrolides such as erythromycin. However, the precise mechanism adopted by Erm methyltransferases for locating the target base within a complicated rRNA scaffold remains unclear. Here, we show that a conserved RNA architecture, including specific bulge sites, present more than 15 Å from the reaction center, is key to methylation at the pathogenic site. Using a set of RNA sequences site-specifically labeled by fluorescent nucleotide surrogates, we show that base flipping is a prerequisite for effective methylation and that distal bases assist in the recognition and flipping at the reaction center. The Erm-RNA complex model revealed that intrinsically flipped-out bases in the RNA serve as a putative anchor point for the Erm. Molecular dynamic simulation studies demonstrated the RNA undergoes a substantial change in conformation to facilitate an effective protein-rRNA handshake. This study highlights the importance of unique architectural features exploited by RNA to impart fidelity to RNA methyltransferases via enabling allosteric crosstalk. Moreover, the distal trigger sites identified here serve as attractive hotspots for the development of combination drug therapy aimed at reversing resistance.


Subject(s)
Methyltransferases , RNA, Ribosomal , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Drug Resistance, Microbial/genetics , Erythromycin/pharmacology , Methyltransferases/metabolism , RNA , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
5.
J Chem Inf Model ; 62(6): 1585-1594, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35232014

ABSTRACT

Protein aggregation is a common and complex phenomenon in biological processes, yet a robust analysis of this aggregation process remains elusive. The commonly used methods such as center-of-mass to center-of-mass (COM-COM) distance, the radius of gyration (Rg), hydrogen bonding (HB), and solvent accessible surface area do not quantify the aggregation accurately. Herein, a new and robust method that uses an aggregation matrix (AM) approach to investigate peptide aggregation in a MD simulation trajectory is presented. An nxn two-dimensional AM is created by using the interpeptide Cα-Cα cutoff distances, which are binarily encoded (0 or 1). These aggregation matrices are analyzed to enumerate, hierarchically order, and structurally classify the aggregates. Comparison of the present AM method suggests that it is superior to the HB method since it can incorporate nonspecific interactions and the Rg and COM-COM methods since the cutoff distance is independent of the length of the peptide. More importantly, the present method can structurally classify the peptide aggregates, which the conventional Rg, COM-COM, and HB methods fail to do. The unique selling point of this method is its ability to structurally classify peptide aggregates using two-dimensional matrices.


Subject(s)
Peptides , Protein Aggregates , Computer Simulation , Hydrogen Bonding , Molecular Dynamics Simulation , Solvents
6.
J Phys Chem B ; 126(8): 1682-1690, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35184562

ABSTRACT

Sac7d belongs to the hyperthermophilc chromosomal protein family, and it is very stable with regard to heat and acidic environments. Unlike many other DNA-protein complexes, the present one is a nonspecific complexation where two amino acids (AA), VAL26 and MET29, are found to intercalate into the same base pair of DNA. Here, we have carried out multiple short molecular dynamic simulations to calculate the distribution of nonspecific protein-DNA aggregates to find the most probable state, which was subsequently used to construct the free energy landscape of protein intercalation into DNA. Analysis of trajectories along the minimum free energy path revealed mechanistic details such as rotation of the protein, simultaneous intercalation of two amino acids, and bending/kinking of the DNA. Moreover, the results indicate a strong interdependency between the intercalating amino acids such that the deintercalation of one AA leads to a spontaneous deintercalation of the other.


Subject(s)
DNA , Molecular Dynamics Simulation , Amino Acids , Base Pairing , DNA/chemistry , Nucleic Acid Conformation , Proteins
7.
J Phys Chem B ; 126(7): 1590-1597, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35156808

ABSTRACT

The ability of phenol to transfer a proton to surrounding ammonia molecules in a phenol-(ammonia)n cluster depends on the relative orientation of ammonia molecules, and a critical field of about 285 MV cm-1 is essential along the O-H bond for the proton-transfer process. Ab initio MD simulations reveal that the proton-transfer process from phenol to ammonia cluster is spontaneous when the cluster has at least eight ammonia molecules, and the proton-transfer event is almost instantaneous (about 20-120 fs). These simulations also reveal that the rate-determining step for the proton-transfer process is the reorganization of the solvent around the OH group. During the solvent reorganization process, the fluctuations in the solvent occur until a particular set of configurations projects the field in excess of the critical electric field along the O-H bond which drives the proton-transfer process. Further, the proton-transfer process follows a curvilinear path which includes the O-H bond elongation and out-of-plane movement of the proton and can be referred to as a "bend-to-break" process.


Subject(s)
Molecular Dynamics Simulation , Protons , Ammonia/chemistry , Phenol , Phenols , Quantum Theory , Solvents/chemistry , Water/chemistry
8.
Chembiochem ; 22(24): 3414-3424, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34387404

ABSTRACT

Flavins play a central role in metabolism as molecules that catalyze a wide range of redox reactions in living organisms. Several variations in flavin biosynthesis exist among the domains of life, and their analysis has revealed many new structural and mechanistic insights till date. The cytidine triphosphate (CTP)-dependent riboflavin kinase in archaea is one such example. Unlike most kinases that use adenosine triphosphate, archaeal riboflavin kinases utilize CTP to phosphorylate riboflavin and produce flavin mononucleotide. In this study, we present the characterization of a new mesophilic archaeal CTP-utilizing riboflavin kinase homologue from Methanococcus maripaludis (MmpRibK), which is linked closely in sequence to the previously characterized thermophilic Methanocaldococcus jannaschii homologue. We reconstitute the activity of MmpRibK, determine its kinetic parameters and molecular factors that contribute to its unique properties, and finally establish the residues that improve its thermostability using computation and a series of experiments. Our work advances the molecular understanding of flavin biosynthesis in archaea by the characterization of the first mesophilic CTP-dependent riboflavin kinase. Finally, it validates the role of salt bridges and rigidifying amino acid residues in imparting thermostability to this unique structural fold that characterizes archaeal riboflavin kinase enzymes, with implications in enzyme engineering and biotechnological applications.


Subject(s)
Cytidine Triphosphate/chemistry , Methanococcus/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Engineering , Temperature , Cytidine Triphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phylogeny
9.
J Phys Chem B ; 125(15): 3752-3762, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33848164

ABSTRACT

DNA-protein interactions regulate several biophysical functions, yet the mechanism of only a few is investigated in molecular detail. An important example is the intercalation of transcription factor proteins into DNA that produce bent and kinked DNA. Here, we have studied the molecular mechanism of the intercalation of a transcription factor SOX4 into DNA with a goal to understand the sequence of molecular events that precede the bending and kinking of the DNA. Our long well-tempered metadynamics and molecular dynamics (MD) simulations show that the protein primarily binds to the backbone of DNA and rotates around it to form an intercalative native state. We show that although there are multiple pathways for intercalation, the deintercalation pathway matches with the most probable intercalation pathway. In both cases, bending and kinking happen simultaneously, driven by the onset of the intercalation of the amino acid.


Subject(s)
DNA , Transcription Factors , Amino Acids , Molecular Dynamics Simulation , Nucleic Acid Conformation
10.
J Phys Chem B ; 119(35): 11590-6, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26258468

ABSTRACT

Binding of transcription factor (TF) proteins with DNA may cause severe kinks in the latter. Here, we investigate the molecular origin of the DNA kinks observed in the TF-DNA complexes using small molecule intercalation pathway, crystallographic analysis, and free energy calculations involving four different transcription factor (TF) protein-DNA complexes. We find that although protein binding may bend the DNA, bending alone is not sufficient to kink the DNA. We show that partial, not complete, intercalation is required to form the kink at a particular place in the DNA. It turns out that while amino acid alone can induce the desired kink through partial intercalation, protein provides thermodynamic stabilization of the kinked state in TF-DNA complexes.


Subject(s)
DNA/metabolism , Nucleic Acid Conformation , Transcription Factors/metabolism , Amino Acids/metabolism , Molecular Dynamics Simulation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...