Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(21)2021 May 03.
Article in English | MEDLINE | ID: mdl-33647893

ABSTRACT

The exchange bias effect at the magnetic interfaces and multi-magnetic phases strongly depends on the antisite disorder (ASD) driven spin configuration in the double perovskite systems. The percentage of ASD in double perovskites is extensively accepted as a key for designing diverse new nanospintronics with tailored functionalities. In this regards, we have investigated such ASD driven phenomena in Ca2+doped bulk and polycrystalline La2-xCaxCoMnO6(0 ⩽x⩽ 1) series of samples. The structural and Raman studies provide evidence of an increase in the disorder due to the increment of Ca concentration in the parent compound (x= 0). The enhancement of disorder in the doped system induces various magnetic orderings, magnetic frustration and cluster glass-like behavior, which have been confirmed from AC and DC magnetic studies and neutron diffraction studies. As a result, significantly large exchange bias effects, namely zero-field cooled (spontaneous) and field-cooled (conventional) exchange bias, are found. These results reveal the tuning of ASD by doping, which plays an active role in the spin configuration at the magnetic interfaces.

2.
J Phys Condens Matter ; 29(34): 345802, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28657548

ABSTRACT

The influence of external pressure (P ⩽ 5 GPa) on both the structural and magnetic ordering in MnV2O4 has been investigated using neutron diffraction technique. The volume and the V-V distance decrease with pressure while the c/a ratio increases, suggesting a lowering of the distortion with pressure. Under ambient conditions this compound exhibits a structural transition (T S) from tetragonal to cubic at ~53 K and a magnetic transition (T N ) at ~56 K. It is found that with an increase in pressure to 5 GPa, T N increases (from 56 K to 80 K), dT N /dP > 0, while T S decreases (from 53 K to 37 K). The non collinear magnetic structure in the tetragonal phase at 5 GPa and 10 K remains the same as at ambient pressure. However, the Mn and V sublattice, now exhibits distinct transition temperatures, [Formula: see text] ~ 80 K, and [Formula: see text] ~ 60 K. The transition to the cubic phase at T S is accompanied by a collinear alignment of the Mn and V spins and a reduction in the Mn moment. The region in which the structure remains in the cubic phase with collinear magnetic structure increases with pressure from ~3 K at ambient pressure to ~43 K at 5 GPa pressure.

SELECTION OF CITATIONS
SEARCH DETAIL