Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
BMC Med ; 22(1): 254, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902659

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-ß and tau pathologies, and their correlation with AD progression. METHODS: A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1ß, and GFAP antibodies. AD-specific markers, amyloid-ß (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS: Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-ß (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-ß (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1ß, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS: Elevated PsEVs, upregulated amyloid-ß (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Humans , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Male , Aged , Female , Case-Control Studies , Amyloid beta-Peptides/metabolism , Aged, 80 and over , Neuroinflammatory Diseases , Biomarkers/blood , Synapses/pathology , Cognitive Dysfunction , Middle Aged , tau Proteins/metabolism
2.
JAMA Ophthalmol ; 142(4): 356-363, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38483402

ABSTRACT

Importance: Primary open-angle glaucoma (POAG) is a highly heritable disease, with 127 identified risk loci to date. Polygenic risk score (PRS) may provide a clinically useful measure of aggregate genetic burden and improve patient risk stratification. Objective: To assess whether a PRS improves prediction of POAG onset in patients with ocular hypertension. Design, Setting, and Participants: This was a post hoc analysis of the Ocular Hypertension Treatment Study. Data were collected from 22 US sites with a mean (SD) follow-up of 14.0 (6.9) years. A total of 1636 participants were followed up from February 1994 to December 2008; 1077 participants were enrolled in an ancillary genetics study, of which 1009 met criteria for this analysis. PRS was calculated using summary statistics from the largest cross-ancestry POAG meta-analysis, with weights trained using 8 813 496 variants from 449 186 cross-ancestry participants in the UK Biobank. Data were analyzed from July 2022 to December 2023. Exposures: From February 1994 to June 2002, participants were randomized to either topical intraocular pressure-lowering medication or close observation. After June 2002, both groups received medication. Main Outcomes and Measures: Outcome measures were hazard ratios for POAG onset. Concordance index and time-dependent areas under the receiver operating characteristic curve were used to compare the predictive performance of multivariable Cox proportional hazards models. Results: Of 1009 included participants, 562 (55.7%) were female, and the mean (SD) age was 55.9 (9.3) years. The mean (SD) PRS was significantly higher for 350 POAG converters (0.24 [0.95]) compared with 659 nonconverters (-0.12 [1.00]) (P < .001). POAG risk increased 1.36% (95% CI, 1.08-1.64) with each higher PRS decile, with conversion ranging from 9.52% (95% CI, 7.09-11.95) in the lowest PRS decile to 21.81% (95% CI, 19.37-24.25) in the highest decile. Comparison of low-risk and high-risk PRS tertiles showed a 2.0-fold increase in 20-year POAG risk for participants of European and African ancestries. In the subgroup randomized to delayed treatment, each increase in PRS decile was associated with a 0.52-year (95% CI, 0.01-1.03) decrease in age at diagnosis (P = .047). No significant linear association between PRS and age at POAG diagnosis was present in the early treatment group. Prediction models significantly improved with the addition of PRS as a covariate (C index = 0.77) compared with the Ocular Hypertension Treatment Study baseline model (C index = 0.75) (P < .001). Each 1-SD higher PRS conferred a mean hazard ratio of 1.25 (95% CI, 1.13-1.44) for POAG onset. Conclusions and Relevance: Higher PRS was associated with increased risk for POAG in patients with ocular hypertension. The inclusion of a PRS improved the prediction of POAG onset. Trial Registration: ClinicalTrials.gov Identifier: NCT00000125.


Subject(s)
Glaucoma, Open-Angle , Ocular Hypertension , Humans , Female , Middle Aged , Male , Glaucoma, Open-Angle/diagnosis , Genetic Risk Score , Risk Factors , Ocular Hypertension/diagnosis , Intraocular Pressure
3.
Res Rep Urol ; 16: 65-78, 2024.
Article in English | MEDLINE | ID: mdl-38476861

ABSTRACT

Acute kidney injury (AKI) is a common complication after surgery and the more complex the surgery, the greater the risk. During surgery, patients are exposed to a combination of factors all of which are associated with the development of AKI. These include hypotension and hypovolaemia, sepsis, systemic inflammation, the use of nephrotoxic agents, tissue injury, the infusion of blood or blood products, ischaemia, oxidative stress and reperfusion injury. Given the risks of AKI, it would seem logical to conclude that early identification of patients at risk of AKI would translate into benefit. The conventional markers of AKI, namely serum creatinine and urine output are the mainstay of defining chronic kidney disease but are less suited to the acute phase. Such concerns are compounded in surgical patients given they often have significantly reduced mobility, suboptimal levels of nutrition and reduced muscle bulk. Many patients may also have misleadingly low serum creatinine and high urine output due to aggressive fluid resuscitation, particularly in intensive care units. Over the last two decades, considerable information has accrued with regard to the performance of what was termed "novel" biomarkers of AKI, and here, we discuss the most examined molecules and performance in surgical settings. We also discuss the application of biomarkers to guide patients' postoperative care.


Kidney damage is common after major surgery with a recent study showing almost 1 in 5 patients suffer kidney damage. The usual tests for measuring kidney function are excellent in the outpatient but not so good in acute scenario's. Therefore, there has been a lot of interest in new markers of kidney damage (so-called novel biomarkers) which perform well acutely and allow earlier detection of damage allowing treatment to be started earlier. This article summarises the currently available biomarkers for use post-operatively and points out the different information that can be achieved by using them routinely.

4.
Invest Ophthalmol Vis Sci ; 65(2): 35, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38393715

ABSTRACT

Purpose: The Ocular Hypertension Treatment Study (OHTS) identified risk factors for primary open-angle glaucoma (POAG) in patients with ocular hypertension, including pattern standard deviation (PSD). Archetypal analysis, an unsupervised machine learning method, may offer a more interpretable approach to risk stratification by identifying patterns in baseline visual fields (VFs). Methods: There were 3272 eyes available in the OHTS. Archetypal analysis was applied using 24-2 baseline VFs, and model selection was performed with cross-validation. Decomposition coefficients for archetypes (ATs) were calculated. A penalized Cox proportional hazards model was implemented to select discriminative ATs. The AT model was compared to the OHTS model. Associations were identified between ATs with both POAG onset and VF progression, defined by mean deviation change per year. Results: We selected 8494 baseline VFs. Optimal AT count was 19. The highest prevalence ATs were AT9, AT11, and AT7. The AT-based prediction model had a C-index of 0.75 for POAG onset. Multivariable models demonstrated that a one-interquartile range increase in the AT5 (hazard ratio [HR] = 1.14; 95% confidence interval [CI], 1.04-1.25), AT8 (HR = 1.22; 95% CI, 1.09-1.37), AT15 (HR = 1.26; 95% CI, 1.12-1.41), and AT17 (HR = 1.17; 95% CI, 1.03-1.31) coefficients conferred increased risk of POAG onset. AT5, AT10, and AT14 were significantly associated with rapid VF progression. In a subgroup analysis by high-risk ATs (>95th percentile or <75th percentile coefficients), PSD lost significance as a predictor of POAG in the low-risk group. Conclusions: Baseline VFs, prior to detectable glaucomatous damage, contain occult patterns representing early changes that may increase the risk of POAG onset and VF progression in patients with ocular hypertension. The relationship between PSD and POAG is modified by the presence of high-risk patterns at baseline. An AT-based prediction model for POAG may provide more interpretable glaucoma-specific information in a clinical setting.


Subject(s)
Glaucoma, Open-Angle , Ocular Hypertension , Optic Disk , Humans , Visual Fields , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/epidemiology , Glaucoma, Open-Angle/complications , Intraocular Pressure , Ocular Hypertension/drug therapy , Machine Learning , Vision Disorders , Visual Field Tests
5.
Front Neurosci ; 17: 1174951, 2023.
Article in English | MEDLINE | ID: mdl-38033547

ABSTRACT

Background: Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods: A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results: In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion: We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.

6.
Transl Vis Sci Technol ; 12(10): 13, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37844261

ABSTRACT

Purpose: Circumpapillary retinal nerve fiber layer thickness (RNFLT) measurement aids in the clinical diagnosis of glaucoma. Spectral domain optical coherence tomography (SD-OCT) machines measure RNFLT and provide normative color-coded plots. In this retrospective study, we investigate whether normative percentiles of RNFLT (pRNFLT) from Spectralis SD-OCT improve prediction of glaucomatous visual field loss over raw RNFLT. Methods: A longitudinal database containing OCT scans and visual fields from Massachusetts Eye & Ear glaucoma clinic patients was generated. Reliable OCT-visual field pairs were selected. Spectralis OCT normative distributions were extracted from machine printouts. Supervised machine learning models compared predictive performance between pRNFLT and raw RNFLT inputs. Regional structure-function associations were assessed with univariate regression to predict mean deviation (MD). Multivariable classification predicted MD, pattern standard deviation, MD change per year, and glaucoma hemifield test. Results: There were 3016 OCT-visual field pairs that met the reliability criteria. Spectralis norms were found to be independent of age, sex, and ocular magnification. Regional analysis showed significant decrease in R2 from pRNFLT models compared to raw RNFLT models in inferotemporal sectors, across multiple regressors. In multivariable classification, there were no significant improvements in area under the curve of receiver operating characteristic curve (ROC-AUC) score with pRNFLT models compared to raw RNFLT models. Conclusions: Our results challenge the assumption that normative percentiles from OCT machines improve prediction of glaucomatous visual field loss. Raw RNFLT alone shows strong prediction, with no models presenting improvement by the manufacturer norms. This may result from insufficient patient stratification in tested norms. Translational Relevance: Understanding correlation of normative databases to visual function may improve clinical interpretation of OCT data.


Subject(s)
Glaucoma , Visual Fields , Humans , Retrospective Studies , Reproducibility of Results , Retinal Ganglion Cells , Nerve Fibers , Glaucoma/diagnosis , Vision Disorders/diagnosis , Tomography, Optical Coherence/methods
7.
BMC Med ; 21(1): 335, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667227

ABSTRACT

BACKGROUND: Parkinson's disease is generally asymptomatic at earlier stages. At an early stage, there is an extensive progression in the neuropathological hallmarks, although, at this stage, diagnosis is not possible with currently available diagnostic methods. Therefore, the pressing need is for susceptibility risk biomarkers that can aid in better diagnosis and therapeutics as well can objectively serve to measure the endpoint of disease progression. The role of small extracellular vesicles (sEV) in the progression of neurodegenerative diseases could be potent in playing a revolutionary role in biomarker discovery. METHODS: In our study, the salivary sEV were efficiently isolated by chemical precipitation combined with ultrafiltration from subjects (PD = 70, healthy controls = 26, and prodromal PD = 08), followed by antibody-based validation with CD63, CD9, GAPDH, Flotillin-1, and L1CAM. Morphological characterization of the isolated sEV through transmission electron microscopy. The quantification of sEV was achieved by fluorescence (lipid-binding dye-labeled) nanoparticle tracking analysis and antibody-based (CD63 Alexa fluor 488 tagged sEV) nanoparticle tracking analysis. The total alpha-synuclein (α-synTotal) in salivary sEVs cargo was quantified by ELISA. The disease severity staging confirmation for n = 18 clinically diagnosed Parkinson's disease patients was done by 99mTc-TRODAT-single-photon emission computed tomography. RESULTS: We observed a significant increase in total sEVs concentration in PD patients than in the healthy control (HC), where fluorescence lipid-binding dye-tagged sEV were observed to be higher in PD (p = 0.0001) than in the HC using NTA with a sensitivity of 94.34%. In the prodromal PD cases, the fluorescence lipid-binding dye-tagged sEV concentration was found to be higher (p = 0.008) than in HC. This result was validated through anti-CD63 tagged sEV (p = 0.0006) with similar sensitivity of 94.12%. We further validated our findings with the ELISA based on α-synTotal concentration in sEV, where it was observed to be higher in PD (p = 0.004) with a sensitivity of 88.24%. The caudate binding ratios in 99mTc-TRODAT-SPECT represent a positive correlation with sEV concentration (r = 0.8117 with p = 0.0112). CONCLUSIONS: In this study, for the first time, we have found that the fluorescence-tagged sEV has the potential to screen the progression of disease with clinically acceptable sensitivity and can be a potent early detection method for PD.


Subject(s)
Extracellular Vesicles , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Fluorescence , Early Diagnosis , Antibodies , Lipids
8.
medRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37645858

ABSTRACT

Objective or Purpose: Primary open-angle glaucoma (POAG) is a highly heritable disease with 127 identified risk loci. Polygenic risks score (PRS) offers a measure of aggregate genetic burden. In this study, we assess whether PRS improves risk stratification in patients with ocular hypertension. Design: A post-hoc analysis of the Ocular Hypertension Treatment Study (OHTS) data. Setting Participants and/or Controls: 1636 participants were followed from 1994 to 2020 across 22 sites. The PRS was computed for 1009 OHTS participants using summary statistics from largest cross-ancestry POAG metanalysis with weights trained using 8,813,496 variants from 488,395 participants in the UK Biobank. Methods Interventions or Testing: Survival regression analysis, with endpoint as development of POAG, predicted disease onset from PRS incorporating baseline covariates. Main Outcomes and Measures: Outcome measures were hazard ratios for POAG onset. Concordance index and time-dependent AUC were used to compare the predictive performance of multivariable Cox-Proportional Hazards models. Results: Mean PRS was significantly higher for POAG-converters (0.24 ± 0.95) than for non-converters (-0.12 ± 1.00) (p < 0.01). POAG risk increased 1.36% with each higher PRS decile, with conversion ranging from 9.5% in the lowest PRS decile to 21.8% in the highest decile. Comparison of low- and high-risk PRS tertiles showed a 1.8-fold increase in 20-year POAG risk for participants of European and African ancestries (p<0.01). In the subgroup randomized to delayed treatment, each increase in PRS decile was associated with a 0.52-year decrease in age at diagnosis, (p=0.05). No significant linear relationship between PRS and age at POAG diagnosis was present in the early treatment group. Prediction models significantly improved with the addition of PRS as a covariate (C-index = 0.77) compared to OHTS baseline model (C-index=0.75) (p<0.01). One standard deviation higher PRS conferred a mean hazard ratio of 1.25 (CI=[1.13, 1.44]) for POAG onset. Conclusions: Higher PRS is associated with increased risk for, and earlier development of POAG in patients with ocular hypertension. Early treatment may mitigate the risk from high genetic burden, delaying clinically detectable disease by up to 5.2 years. The inclusion of a PRS improves the prediction of POAG onset.

9.
J Phys Chem B ; 127(31): 6903-6919, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37506269

ABSTRACT

Many functional RNAs fold into a compact, roughly globular shape by minimizing the electrostatic repulsion between their negatively charged phosphodiester backbone. The fold of such close, compact RNA architecture is often so designed that its outer surface and complex core both are predominately populated by phosphate groups loosely sequestering bases in the intermediate layers. A number of helical junctions maintain the RNA core and its nano-water-pool. While the folding of RNA is manifested by its counterion environment composed of mixed mono- and divalent salts, the concerted role of ion and water in maintaining an RNA fold is yet to be explored. In this work, detailed atomistic simulations of SAM-I and Add Adenine riboswitch aptamers, and subgenomic flavivirus RNA (sfRNA) have been performed in a physiological mixed mono- and divalent salt environment. All three RNA systems have compact folds with a core diameter of range 1-1.7 nm. The spatiotemporal heterogeneity of RNA hydration was probed in a layer-wise manner by distinguishing the core, the intermediate, and the outer layers. The layer-wise decomposition of hydrogen bonds and collective single-particle reorientational dynamics reveal a nonmonotonic relaxation pattern with the slowest relaxation observed at the intermediate layers that involves functionally important tertiary motifs. The slowness of this intermediate layer is attributed to two types of long-resident water molecules: (i) water from ion-hydration layers and (ii) structurally trapped water (distant from ions). The relaxation kinetics of the core and the surface water essentially exposed to the phosphate groups show well-separated time scales from the intermediate layers. In the slow intermediate layers, site-specific ions and water control the functional dynamics of important RNA motifs like kink-turn, observed in different structure-probing experiments. Most interestingly, we find that as the size of the RNA core increases (SAM1 core < sfRNAcore < Add adenine core), its hydration tends to show faster relaxation. The hierarchical hydration and the layer-wise base-phosphate composition uniquely portray the globular RNA to act like a soft vesicle with a quasi-dynamic nano-water-pool at its core.


Subject(s)
RNA , Water , Hydrogen Bonding , Oligonucleotides , Phosphates , RNA/chemistry , Water/chemistry , Subgenomic RNA/chemistry
10.
Procedia Comput Sci ; 218: 1335-1341, 2023.
Article in English | MEDLINE | ID: mdl-36743786

ABSTRACT

The world was taken aback when the Covid-19 pandemic hit in 2019. Ever since precautions have been taken to prevent the spreading or mutating of the virus, but the virus still keeps spreading and mutating. Scientists predict that the virus is going to stay for a long time but with reduced effectiveness. Recognizing the symptoms of the virus is essential in order to provide proper treatment for the virus. Visiting hospitals for consultation becomes quite difficult when people are supposed to maintain social distancing. Recently neural network generative models have shown impressive abilities in developing chatbots. However, using these neural network generative models that lack the required Covid specific knowledge to develop a Covid consulting system makes them difficult to be scaled. In order to bridge the gap between patients and a limited number of doctors we have proposed a Covid consulting agent by integrating the medical knowledge of Covid-19 with the neural network generative models. This system will automatically scan patient's dialogues seeking for a consultation to recognize the symptoms for Covid-19. The transformer and pretrained systems of BERT-GPT and GPT were fine-tuned CovidDialog-English dataset to generate responses for Covid-19 which were doctor-like and clinically meaningful to further solve the problem of the surging demand for medical consultations compared to the limited number of medical professionals. The results are evaluated and compared using multiple evaluation metrics which are NIST-n, perplexity, BLEU-n, METEOR, Entropy-n and Dist-n. In this paper, we also hope to prove that the results obtained from the automated dialogue systems were significantly similar to human evaluation. Furthermore, the evaluation shows that state-of-the-art BERT-GPT performs better.

11.
Int J Stem Cells ; 16(2): 156-167, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36823979

ABSTRACT

Background and Objectives: Cellular reprogramming in regenerative medicine holds great promise for treating patients with neurological disorders. In this regard, small molecule-mediated cellular conversion has attracted special attention because of its ease of reproducibility, applicability, and fewer safety concerns. However, currently available protocols for the direct conversion of somatic cells to neurons are limited in clinical application due of their complex nature, lengthy process, and low conversion efficiency. Methods and Results: Here, we report a new protocol involving chemical-based direct conversion of human fibroblasts (HF) to matured neuron-like cells with a short duration and high conversion efficiency using temporal and strategic dual epigenetic regulation. In this protocol, epigenetic modulation by inhibition of histone deacetylase and bromodomain enabled to overcome "recalcitrant" nature of adult fibroblasts and shorten the duration of neuronal reprogramming. We further observed that an extended epigenetic regulation is necessary to maintain the induced neuronal program to generate a homogenous population of neuron-like cells. Conclusions: Therefore, our study provides a new protocol to produce neurons-like cells and highlights the need of proper epigenetic resetting to establish and maintain neuronal program in HF.

12.
Ind Psychiatry J ; 32(Suppl 1): S287-S288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38370939
13.
Biomedicines ; 10(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35453678

ABSTRACT

Astrocyte-to-neuron reprogramming is a promising therapeutic approach for treatment of neurodegenerative diseases. The use of small molecules as an alternative to the virus-mediated ectopic expression of lineage-specific transcription factors negates the tumorigenic risk associated with viral genetic manipulation and uncontrolled differentiation of stem cells. However, because previously developed methods for small-molecule reprogramming of astrocytes to neurons are multistep, complex, and lengthy, their applications in biomedicine, including clinical treatment, are limited. Therefore, our objective in this study was to develop a novel chemical-based approach to the cellular reprogramming of astrocytes into neurons with high efficiency and low complexity. To accomplish that, we used C8-D1a, a mouse astrocyte cell line, to assess the role of small molecules in reprogramming protocols that otherwise suffer from inconsistencies caused by variations in donor of the primary cell. We developed a new protocol by which a chemical mixture formulated with Y26732, DAPT, RepSox, CHIR99021, ruxolitinib, and SAG rapidly and efficiently induced the neural reprogramming of astrocytes in four days, with a conversion efficiency of 82 ± 6%. Upon exposure to the maturation medium, those reprogrammed cells acquired a glutaminergic phenotype over the next eleven days. We also demonstrated the neuronal functionality of the induced cells by confirming KCL-induced calcium flux.

14.
Neural Netw ; 151: 34-47, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35381441

ABSTRACT

Rapid advancements in deep learning have led to many recent breakthroughs. While deep learning models achieve superior performance, often statistically better than humans, their adoption into safety-critical settings, such as healthcare or self-driving cars is hindered by their inability to provide safety guarantees or to expose the inner workings of the model in a human understandable form. We present MoËT, a novel model based on Mixture of Experts, consisting of decision tree experts and a generalized linear model gating function. Thanks to such gating function the model is more expressive than the standard decision tree. To support non-differentiable decision trees as experts, we formulate a novel training procedure. In addition, we introduce a hard thresholding version, MoËTh, in which predictions are made solely by a single expert chosen via the gating function. Thanks to that property, MoËTh allows each prediction to be easily decomposed into a set of logical rules in a form which can be easily verified. While MoËT is a general use model, we illustrate its power in the reinforcement learning setting. By training MoËT models using an imitation learning procedure on deep RL agents we outperform the previous state-of-the-art technique based on decision trees while preserving the verifiability of the models. Moreover, we show that MoËT can also be used in real-world supervised problems on which it outperforms other verifiable machine learning models.


Subject(s)
Machine Learning , Reinforcement, Psychology , Humans , Linear Models
15.
JMIR Med Educ ; 8(1): e32183, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35357319

ABSTRACT

BACKGROUND: Modern innovations, like machine learning, genomics, and digital health, are being integrated into medical practice at a rapid pace. Physicians in training receive little exposure to the implications, drawbacks, and methodologies of upcoming technologies prior to their deployment. As a result, there is an increasing need for the incorporation of innovation and technology (I&T) training, starting in medical school. OBJECTIVE: We aimed to identify and describe curricular and extracurricular opportunities for innovation in medical technology in US undergraduate medical education to highlight challenges and develop insights for future directions of program development. METHODS: A review of publicly available I&T program information on the official websites of US allopathic medical schools was conducted in June 2020. Programs were categorized by structure and implementation. The geographic distribution of these categories across US regions was analyzed. A survey was administered to school-affiliated student organizations with a focus on I&T and publicly available contact information. The data collected included the founding year, thematic focus, target audience, activities offered, and participant turnout rate. RESULTS: A total of 103 I&T opportunities at 69 distinct Liaison Committee on Medical Education-accredited medical schools were identified and characterized into the following six categories: (1) integrative 4-year curricula, (2) facilitated doctor of medicine/master of science dual degree programs in a related field, (3) interdisciplinary collaborations, (4) areas of concentration, (5) preclinical electives, and (6) student-run clubs. The presence of interdisciplinary collaboration is significantly associated with the presence of student-led initiatives (P=.001). "Starting and running a business in healthcare" and "medical devices" were the most popular thematic focuses of student-led I&T groups, representing 87% (13/15) and 80% (12/15) of respondents, respectively. "Career pathways exploration for students" was the only type of activity that was significantly associated with a high event turnout rate of >26 students per event (P=.03). CONCLUSIONS: Existing school-led and student-driven opportunities in medical I&T indicate growing national interest and reflect challenges in implementation. The greater visibility of opportunities, collaboration among schools, and development of a centralized network can be considered to better prepare students for the changing landscape of medical practice.

16.
Ind Psychiatry J ; 30(Suppl 1): S308-S310, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34908718

ABSTRACT

Emotion is a stirred-up state caused by physiological changes occurring as a response to some event and which tends to maintain or abolish the causative event. Understanding the neuroanatomical basis of the genesis and control of emotions is quintessential in understanding how biology affects the mind and in turn, helps in understanding our own nature. We present a short communication explaining the neurological basis of emotions.

17.
Ind Psychiatry J ; 30(Suppl 1): S320-S321, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34908721

ABSTRACT

Magnetic seizure therapy is a novel form of focal convulsive treatment wherein magnetic field passes through the scalp and skull without impedance. In many ways, it has the potential to be superior to electroconvulsive therapy (ECT) as the anesthesia-associated side effects and cognitive impairments are less. It also may be an alternative for those who do not opt for ECT because of the stigma associated with it.

18.
ACS Appl Mater Interfaces ; 13(43): 50744-50759, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34664954

ABSTRACT

A hostile myocardial microenvironment post ischemic injury (myocardial infarction) plays a decisive role in determining the fate of tissue-engineered approaches. Therefore, engineering hybrid 3D printed platforms that can modulate the MI microenvironment for improving implant acceptance has surfaced as a critical requirement for reconstructing an infarcted heart. Here, we have employed a non-mulberry silk-based conductive bioink comprising carbon nanotubes (CNTs) to bioprint functional 3D vascularized anisotropic cardiac constructs. Immunofluorescence staining, polymerase chain reaction-based gene expression studies, and electrophysiological studies showed that the inclusion of CNTs in the bioink played a significant role in upregulating matured cardiac biomarkers, sarcomere formation, and beating rate while promoting cardiomyocyte viability. These constructs were then microinjected with calcium peroxide and IL-10-loaded gelatin methacryloyl microspheres. Measurements of oxygen concentration revealed that these microspheres upheld the oxygen availability for maintaining cellular viability for at least 5 days in a hypoxic environment. Also, the ability of microinjected IL-10 microspheres to modulate the macrophages to anti-inflammatory M2 phenotype in vitro was uncovered using immunofluorescent staining and gene expression studies. Furthermore, in vivo subcutaneous implantation of microsphere-injected 3D constructs provided insights toward the extended time frame that was achieved for dealing with the hostile microenvironment for promoting host neovascularization and implant acceptance.


Subject(s)
Bioprinting , Interleukin-10/metabolism , Myocytes, Cardiac/drug effects , Peroxides/pharmacology , Tissue Engineering , Tissue Scaffolds/chemistry , Humans , Immunomodulation , Interleukin-10/chemistry , Microspheres , Myocytes, Cardiac/metabolism , Nanotubes, Carbon/chemistry , Oxygen/analysis , Oxygen/metabolism , Peroxides/chemistry , Silk/chemistry , THP-1 Cells
19.
Development ; 148(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34086041

ABSTRACT

During valvulogenesis, cytoskeletal, secretory and transcriptional events drive endocardial cushion growth and remodeling into thin fibrous leaflets. Genetic disorders play an important role in understanding valve malformations but only account for a minority of clinical cases. Mechanical forces are ever present, but how they coordinate molecular and cellular decisions remains unclear. In this study, we used osmotic pressure to interrogate how compressive and tensile stresses influence valve growth and shape maturation. We found that compressive stress drives a growth phenotype, whereas tensile stress increases compaction. We identified a mechanically activated switch between valve growth and maturation, by which compression induces cushion growth via BMP-pSMAD1/5, while tension induces maturation via pSer-19-mediated MLC2 contractility. The compressive stress acts through BMP signaling to increase cell proliferation and decrease cell contractility, and MEK-ERK is essential for both compressive stress and BMP mediation of compaction. We further showed that the effects of osmotic stress are conserved through the condensation and elongation stages of development. Together, our results demonstrate that compressive/tensile stress regulation of BMP-pSMAD1/5 and MLC2 contractility orchestrates valve growth and remodeling.


Subject(s)
Biophysics , Growth and Development/physiology , Heart Valves/pathology , Stress, Mechanical , Animals , Biological Phenomena , Cardiac Myosins , Cell Proliferation , Chickens , Cytokines/metabolism , Humans , Myosin Light Chains , Phenotype , Signal Transduction , Smad1 Protein , Smad5 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...