Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13083, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844568

ABSTRACT

In bread wheat, a literature search gave 228 QTLs for six traits, including resistance against spot blotch and the following five other related traits: (i) stay green; (ii) flag leaf senescence; (iii) green leaf area duration; (iv) green leaf area of the main stem; and (v) black point resistance. These QTLs were used for metaQTL (MQTL) analysis. For this purpose, a consensus map with 72,788 markers was prepared; 69 of the above 228 QTLs, which were suitable for MQTL analysis, were projected on the consensus map. This exercise resulted in the identification of 16 meta-QTLs (MQTLs) located on 11 chromosomes, with the PVE ranging from 5.4% (MQTL7) to 21.8% (MQTL5), and the confidence intervals ranging from 1.5 to 20.7 cM (except five MQTLs with a range of 36.1-57.8 cM). The number of QTLs associated with individual MQTLs ranged from a maximum of 17 in MQTL3 to 8 each in MQTL5 and MQTL8 and 5 each in MQTL7 and MQTL14. The 16 MQTLs, included 12 multi-trait MQTLs; one of the MQTL also overlapped a genomic region carrying the major spot blotch resistance gene Sb1. Of the total 16 MQTLs, 12 MQTLs were also validated through marker-trait associations that were available from earlier genome-wide association studies. The genomic regions associated with MQTLs were also used for the identification of candidate genes (CGs) and led to the identification of 516 CGs encoding 508 proteins; 411 of these proteins are known to be associated with resistance against several biotic stresses. In silico expression analysis of CGs using transcriptome data allowed the identification of 71 differentially expressed CGs, which were examined for further possible studies. The findings of the present study should facilitate fine-mapping and cloning of genes, enabling Marker Assisted Selection.


Subject(s)
Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosomes, Plant/genetics , Genes, Plant , Phenotype , Bread
2.
Front Plant Sci ; 14: 1023824, 2023.
Article in English | MEDLINE | ID: mdl-37063191

ABSTRACT

In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.

3.
Mol Breed ; 42(10): 56, 2022 Oct.
Article in English | MEDLINE | ID: mdl-37313017

ABSTRACT

We recently developed a database for hexaploid wheat QTL (WheatQTLdb; www.wheatqtldb.net), which included 11,552 QTL affecting various traits of economic importance. However, that database did not include valuable QTL from other wheat species and/or progenitors of hexaploid wheat. Therefore, an updated and improved version of wheat QTL database (WheatQTLdb V2.0) was developed, which now includes information on hexaploid wheat (Triticum aestivum) and the following seven other related species: T. durum, T. turgidum, T. dicoccoides, T. dicoccum, T. monococcum, T. boeoticum, and Aegilops tauschii. WheatQTLdb V2.0 includes a much-improved list of QTL, including 27,518 main effect QTL, 202 epistatic QTL, and 1321 metaQTL. This newly released WheatQTLdb V2.0 also has additional valuable options to search and choose the QTL, category-wise, and trait-wise data for their use in research or breeding programs.

4.
Front Plant Sci ; 13: 1036064, 2022.
Article in English | MEDLINE | ID: mdl-36743576

ABSTRACT

Genetic architecture of resistance to spot blotch in wheat was examined using a Genome-Wide Association Study (GWAS) involving an association panel comprising 303 diverse genotypes. The association panel was evaluated at two different locations in India including Banaras Hindu University (BHU), Varanasi (Uttar Pradesh), and Borlaug Institute for South Asia (BISA), Pusa, Samastipur (Bihar) for two consecutive years (2017-2018 and 2018-2019), thus making four environments (E1, BHU 2017-18; E2, BHU 2018-19; E3, PUSA, 2017-18; E4, PUSA, 2018-19). The panel was genotyped for 12,196 SNPs based on DArT-seq (outsourced to DArT Ltd by CIMMYT); these SNPs included 5,400 SNPs, which could not be assigned to individual chromosomes and were therefore, described as unassigned by the vendor. Phenotypic data was recorded on the following three disease-related traits: (i) Area Under Disease Progress Curve (AUDPC), (ii) Incubation Period (IP), and (iii) Lesion Number (LN). GWAS was conducted using each of five different models, which included two single-locus models (CMLM and SUPER) and three multi-locus models (MLMM, FarmCPU, and BLINK). This exercise gave 306 MTAs, but only 89 MTAs (33 for AUDPC, 30 for IP and 26 for LN) including a solitary MTA detected using all the five models and 88 identified using four of the five models (barring SUPER) were considered to be important. These were used for further analysis, which included identification of candidate genes (CGs) and their annotation. A majority of these MTAs were novel. Only 70 of the 89 MTAs were assigned to individual chromosomes; the remaining 19 MTAs belonged to unassigned SNPs, for which chromosomes were not known. Seven MTAs were selected on the basis of minimum P value, number of models, number of environments and location on chromosomes with respect to QTLs reported earlier. These 7 MTAs, which included five main effect MTAs and two for epistatic interactions, were considered to be important for marker-assisted selection (MAS). The present study thus improved our understanding of the genetics of resistance against spot blotch in wheat and provided seven MTAs, which may be used for MAS after due validation.

6.
Mol Genet Genomics ; 296(5): 1051-1056, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34115214

ABSTRACT

During the last three decades, QTL analysis in wheat has been conducted for a variety of individual traits, so that thousands of QTL along with the linked markers, their genetic positions and contribution to phenotypic variation (PV) for concerned traits are now known. However, no exhaustive database for wheat QTL is currently available at a single platform. Therefore, the present database was prepared which is an exhaustive information resource for wheat QTL data from the published literature till May, 2020. QTL data from both interval mapping and genome-wide association studies (GWAS) have been included for the following classes of traits: (i) morphological traits, (ii) N and P use efficiency, (iii) traits for biofortification (Fe, K, Se, and Zn contents), (iv) tolerance to abiotic stresses including drought, water logging, heat stress, pre-harvest sprouting and salinity, (v) resistance to biotic stresses including those due to bacterial, fungal, nematode and insects, (vi) quality traits, and (vii) a variety of physiological traits, (viii) developmental traits, and (ix) yield and its related traits. For the preparation of the database, literature was searched for data on QTL/marker-trait associations (MTAs), curated and then assembled in the form of WheatQTLdb. The available information on metaQTL, epistatic QTL and candidate genes, wherever available, is also included in the database. Information on QTL in this WheatQTLdb includes QTL names, traits, associated markers, parental genotypes, crosses/mapping populations, association mapping panels and other useful information. To our knowledge, WheatQTLdb prepared by us is the largest collection of QTL (11,552), epistatic QTL (107) and metaQTL (330) data for hexaploid wheat to be used by geneticists and plant breeders for further studies involving fine mapping, cloning, and marker-assisted selection (MAS) during wheat breeding.


Subject(s)
Databases, Genetic , Quantitative Trait Loci , Triticum/genetics , Epistasis, Genetic , Internet , User-Computer Interface
7.
Mol Breed ; 41(7): 46, 2021 Jul.
Article in English | MEDLINE | ID: mdl-37309385

ABSTRACT

A genome-wide association study (GWAS) for 10 yield and yield component traits was conducted using an association panel comprising 225 diverse spring wheat genotypes. The panel was genotyped using 10,904 SNPs and evaluated for three years (2016-2019), which constituted three environments (E1, E2 and E3). Heritability for different traits ranged from 29.21 to 97.69%. Marker-trait associations (MTAs) were identified for each trait using data from each environment separately and also using BLUP values. Four different models were used, which included three single trait models (CMLM, FarmCPU, SUPER) and one multi-trait model (mvLMM). Hundreds of MTAs were obtained using each model, but after Bonferroni correction, only 6 MTAs for 3 traits were available using CMLM, and 21 MTAs for 4 traits were available using FarmCPU; none of the 525 MTAs obtained using SUPER could qualify after Bonferroni correction. Using BLUP, 20 MTAs were available, five of which also figured among MTAs identified for individual environments. Using mvLMM model, after Bonferroni correction, 38 multi-trait MTAs, for 15 different trait combinations were available. Epistatic interactions involving 28 pairs of MTAs were also available for seven of the 10 traits; no epistatic interactions were available for GNPS, PH, and BYPP. As many as 164 putative candidate genes (CGs) were identified using all the 50 MTAs (CMLM, 3; FarmCPU, 9; mvLMM, 6, epistasis, 21 and BLUP, 11 MTAs), which ranged from 20 (CMLM) to 66 (epistasis) CGs. In-silico expression analysis of CGs was also conducted in different tissues at different developmental stages. The information generated through the present study proved useful for developing a better understanding of the genetics of each of the 10 traits; the study also provided novel markers for marker-assisted selection (MAS) to be utilized for the development of wheat cultivars with improved agronomic traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01240-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...