Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-5, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775340

ABSTRACT

The aim of this research was to study the metabolite composition, antioxidative potential and cytotoxic activities of Solanum melongena fruit extracts. Phytochemical analyses of extracts were performed using LC-MS. Phenolic compounds were the major constituents present in the fruit extracts. Free radical scavenging activities were recorded and the highest activities were reported in methanolic extracts using DPPH (103.70 ± 2.75 EC50 µg/mL), ABTS (81.74 ± 3.64 EC50 µg/mL), and FRAP (22.39 ± 1.52 µmol TE/g) assays. Quantification has suggested the presence of delphinidin derivatives, and caffeic acid conjugates as major constituents of fruit extracts. The potential binding of these derivatives with human cell surface receptors was analysed using in silico analysis and validated for cytotoxic and apoptotic effects using in vitro studies on human cancer cell lines. The methanolic extract has shown the highest cytotoxic activity.

2.
Res Sq ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38077015

ABSTRACT

Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1ß, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.

3.
Materials (Basel) ; 16(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068224

ABSTRACT

In the present study, the properties of Cu(Ag) alloy films were studied to evaluate their potential use as an alternate material for interconnection in hybrid bonding. Thin alloy films of Cu(Ag) were deposited by pulsed electrochemical deposition (PED) using a sulfuric acid-based bath, rotating disk electrode, and hot entry. Secondary ion mass spectrometry (SIMS) was used to measure the silver content of the films, with us finding that it decreases with increasing duty cycle. Thereafter, bright field scanning transmission electron microscope (STEM) imaging in combination with energy-dispersive x-ray spectroscopy (EDS) was used to visualize the thin film microstructure and to confirm the uniform distribution of silver throughout the film, with no bands being seen despite the pulsed nature of the deposition. Film resistance was measured by a four-point probe to quantify the impact of Ag content on resistivity, with us finding the expected linear relationship with the Ag content in the film. Furthermore, the coefficient of thermal expansion (CTE) of the films was measured using X-ray diffraction, and modulus and hardness were measured via nanoindentation, revealing linear dependences on the Ag content as well. Notably, the addition of 1.25 atom% Ag resulted in a significant increase in the CTE from 17.9 to 19.3 ppm/K, Young's modulus from 111 to 161 GPa, and film hardness from 1.70 to 3.99 GPa. These simple relationships offer a range of properties tunable via the duty cycle of the pulsed plating, making Cu(Ag) a promising candidate for engineering wafer-to-wafer metal interconnections.

4.
Trop Anim Health Prod ; 53(1): 180, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33624145

ABSTRACT

Reproductive problems in swine caused by porcine viruses pose a serious threat to the pig industry in developing countries like India. For evaluating the true extent of porcine infections, a total of 1308 representative sera samples were collected from 92 different pig farms covering 8 North-Eastern states and Punjab state of Northern India during a period of 2 years (2011-2013). Sera samples were tested for the presence of antibodies against porcine parvovirus (PPV), porcine circovirus-2 (PCV-2), and classical swine fever virus (CSFV) using commercial enzyme-linked immunosorbent assay (ELISA) kits. In the North-Eastern states, the seroprevalence of CSFV in non-vaccinated animals was 6.30% and that of PCV2 and PPV was 6.28% and 1.24%, respectively. In Punjab, the seroprevalence of CSFV in non-vaccinated animals was 44.44% and seroprevalence of PCV-2 and PPV was 34.07% and 39.10%, respectively. Detection of antibodies against more than one virus revealed that 4.66% animals had co-infection with PCV-2 and PPV, 1.75% with CSF and PPV, 1.98% with CSF and PCV-2, and 1.75% with all the three viruses. The receiver operator characteristics (ROC) curve analysis depicted that piglet mortality, parvovirus, and CSFV were the most important parameters with an AUC value of 0.997, 0.897, and 0.973, respectively. Incidence of single or co-infection with different viruses showed that the occurrence of single infection was significantly more prevalent than co-infection. This study provides useful information to set up future epidemiologic, flock management, and public animal health policies for the prevention and control of PCV-2, PPV, and CSF in India.


Subject(s)
Circoviridae Infections , Circovirus , Classical Swine Fever Virus , Parvovirus, Porcine , Swine Diseases , Animals , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , India/epidemiology , Seroepidemiologic Studies , Swine , Swine Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...