Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(17): 13152-13163, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629633

ABSTRACT

The current work describes a facile synthesis of spinel-type ZnCo2O4 along with an additional phase, Co3O4, by simply maintaining a non-stoichiometric ratio of Zn and Co precursors. Pure ZnCo2O4 and Co3O4 were also synthesized using the same method to compare results. The obtained morphologies of samples show that small-sized nanoparticles are interconnected and form a porous nanosheet-like structure. When used as anode materials for Li-ion batteries, the ZnCo2O4/Co3O4 nanocomposite electrode exhibits a highly stable charge capacity of 1146.2 mA h g-1 at 0.5C after 350 cycles, which is superior to those of other two pure electrodes, which can be attributed to its optimum porosity, synergistic effect of ZnCo2O4 and Co3O4, increased active sites for Li+ ion diffusion, and higher electrical conductivity. Although the pure Co3O4 electrode displayed a much higher rate capability than the ZnCo2O4/Co3O4 nanocomposite electrode at all investigated current rates, the Co3O4 morphology apparently could not withstand long-term cycling, and the electrode became pulverized due to the repeated volume expansion/contraction, resulting in a rapid decrease in the capacity.

2.
Phys Chem Chem Phys ; 26(4): 3516-3524, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206350

ABSTRACT

Herein, a mesoporous MnCo2O4/Co3O4 nanocomposite was fabricated using a polyvinylpyrrolidone (PVP)-assisted hydrothermal synthesis method by maintaining only the non-stoichiometric ratio of Mn and Co (2 : 6), leading to an extra phase of Co3O4 coupled with MnCo2O4. Microstructural analysis showed that the obtained sample has a uniform nanowire-like morphology composed of interconnected nanoparticles. The stoichiometric ratio (2 : 4) was maintained to synthesize pure MnCo2O4 for comparative analysis. However, the obtained structure of pure MnCo2O4 was found to be irregular and fragile. After their employment as anode-active materials, the nanocomposite electrode showed superior high rate capability (1043.8 mA h g-1 at 5C) and long-term cycling stability (773.6 mA h g-1 after 500 cycles at 0.5C) in comparison to the pure MnCo2O4 electrode (771.5 mA h g-1 at 5C and 638.9 mA h g-1 at 0.5C after 500 cycles). It was believed that the extra phase of Co3O4 may also participate in the electrochemical reactions due to its high electrochemically active nature. Benefiting from the appealing architectural features and striking synergistic effect, the integrated MnCo2O4/Co3O4 nanocomposite anode exhibits excellent electrochemical properties and high cycle stability for LIBs.

3.
Adv Sci (Weinh) ; 9(28): e2201648, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35863915

ABSTRACT

A tandem (two-step) particle swarm optimization (PSO) algorithm is implemented in the argyrodite-based multidimensional composition space for the discovery of an optimal argyrodite composition, i.e., with the highest ionic conductivity (7.78 mS cm-1 ). To enhance the industrial adaptability, an elaborate pellet preparation procedure is not used. The optimal composition (Li5.5 PS4.5 Cl0.89 Br0.61 ) is fine-tuned to enhance its practical viability by incorporating oxygen in a stepwise manner. The final composition (Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 ), which exhibits an ionic conductivity (σion ) of 6.70 mS cm-1 and an activation barrier of 0.27 eV, is further characterized by analyzing both its moisture and electrochemical stability. Relative to the other compositions, the exposure of Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 to a humid atmosphere results in the least amount of H2 S released and a negligible change in structure. The improvement in the interfacial stability between the Li(Ni0.9 Co0.05 Mn0.05 )O2 cathode and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 also results in greater specific capacity during fast charge/discharge. The structural and chemical features of Li5.5 PS4.5 Cl0.89 Br0.61 and Li5.5 PS4.23 O0.27 Cl0.89 Br0.61 argyrodites are characterized using synchrotron X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. This work presents a novel argyrodite composition with favorably balanced properties while providing broad insights into material discovery methodologies with applications for battery development.

4.
Inorg Chem ; 60(8): 6047-6056, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33784818

ABSTRACT

A novel KGaS2 phosphor host that emits a cyan light was discovered to fill the cyan gap in the visible spectrum of phosphor-converted white light-emitting diodes (pc-wLEDs). KGaS2, belonging to the chalcogenometallates of the type ABQ2, was synthesized via a solid-state route with compositions optimized to achieve a phosphor host that would achieve the best photoluminescence (PL) properties. The activation with Eu2+ gave rise to PL in the cyan region of the spectrum with a PL maximum at ∼498 nm, as measured under the near-UV (420 nm) and blue (450 nm) excitations. The PL properties at the near-UV excitation are found to be much better, as compared to those obtained at the blue excitation. The Rietveld analysis, using high resolution synchrotron X-ray diffraction calibrated at a wavelength of 1.522 Å and selected area electron diffraction (SAED) pattern analysis of the composition optimized with the highest PL intensity, revealed a centrosymmetric monoclinic structure in the C2/c space group. The stoichiometry of the optimized composition, as estimated using Rietveld refinement, was revealed as KGa0.921S1.882:Eu2+. The decay curve measurement, using time-resolved spectroscopy, yielded a 10% decay time of 0.41 µs, which is much smaller compared with the decay time of the commercially available ß-SIALON phosphor that has a 10% decay time of 1.71 µs. The white pc-LED, fabricated with a cyan phosphor, had a higher value on the color rendering index and a lower value for color correlated temperatures, as compared with the version fabricated without a cyan phosphor, which makes this novel phosphor suitable for applications as a pc-wLED.

5.
Nat Commun ; 11(1): 704, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32001702

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Commun ; 11(1): 86, 2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31900391

ABSTRACT

Here we report a facile, prompt protocol based on deep-learning techniques to sort out intricate phase identification and quantification problems in complex multiphase inorganic compounds. We simulate plausible powder X-ray powder diffraction (XRD) patterns for 170 inorganic compounds in the Sr-Li-Al-O quaternary compositional pool, wherein promising LED phosphors have been recently discovered. Finally, 1,785,405 synthetic XRD patterns are prepared by combinatorically mixing the simulated powder XRD patterns of 170 inorganic compounds. Convolutional neural network (CNN) models are built and eventually trained using this large prepared dataset. The fully trained CNN model promptly and accurately identifies the constituent phases in complex multiphase inorganic compounds. Although the CNN is trained using the simulated XRD data, a test with real experimental XRD data returns an accuracy of nearly 100% for phase identification and 86% for three-step-phase-fraction quantification.

7.
Phys Chem Chem Phys ; 20(41): 26405-26413, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30306168

ABSTRACT

Here, we propose a new and logical approach to systematically treat the configurational diversity in density functional theory (DFT) calculations. To tackle this issue, we select Li0.5CoO2 as a representative example because it is one of the most extensively studied cathodes in Li-ion batteries (LIBs), and it has a huge number of disordered configurations. To delineate the configurations that will match well with the experimentally measured macro-functions of redox potential, band gap energy, and magnetic moment, we adopt a multi-objective, non-dominated sorting, genetic algorithm (NSGA-III) that enables the simultaneous optimization of these three objective functions. The decision variables include configuration of the Li/vacancy, initial input for the magnetic moment distribution reflecting Co3+/Co4+ distribution, and initial input for the lattice parameter and Hubbard U. We use NSGA-III to separate the configurations that exhibit awkward objective function values, which allows us to pinpoint a set of plausible configurations that match the experimentally estimated values of the objective functions. The results reveal a plausible configuration that is a mixture of various ordered/disordered configurations rather than a simple ordered structure.

8.
Small ; 14(49): e1803495, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30353995

ABSTRACT

KCrS2 is presented as a stable and high-rate layered material that can be used as a cathode in potassium-ion batteries. As far as it is known, KCrS2 is the only layered material with stoichiometric amounts of K+ , which enables coupling with a graphite anode for full-cell construction. Cr(III)/Cr(IV) redox in KCrS2 is also unique, because LiCrS2 and NaCrS2 are known to experience S2- /S2 2- redox. O3-KCrS2 is first charged to P3-K0.39 CrS2 and subsequently discharged to O'3-K0.8 CrS2 , delivering an initial discharge capacity of 71 mAh g-1 . The following charge/discharge (C/D) shows excellent reversibility between O'3-K0.8 CrS2 and P3-K0.39 CrS2 , retaining ≈90% of the initial capacity during 1000 continuous cycles. The rate performance is also noteworthy. A C/D rate increase of 100-fold (0.05 to 5 C) reduces the reversible capacity only by 39% (71 to 43 mAh g-1 ). The excellent cyclic stability and high rate performance are ascribed to the soft sulfide framework, which can effectively buffer the stress caused by K+ deinsertion/insertion. During the transformation between P3-K0.39 CrS2 and O'3-K0.8 CrS2 , the material resides mostly in the P3 phase, which minimizes the abrupt dimension change and allows facile K+ diffusion through spacious prismatic sites. Structural analysis and density functional theory calculations firmly support this reasoning.

9.
IUCrJ ; 4(Pt 4): 486-494, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28875035

ABSTRACT

A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.

10.
Sci Rep ; 7(1): 9407, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839274

ABSTRACT

Replacing platinum (Pt) metal-based electrocatalysts used in the oxygen reduction reaction (ORR) in fuel cells is an important research topic due to the high cost and scarcity of Pt, which have restricted the commercialization of these clean-energy technologies. The ABO3-type perovskite family of an ACu3Ti4O12 (A = Ca, Y, Bi, and La) polycrystalline material can serve as an alternative electrocatalyst for the ORR in terms of low-cost, activity, and stability. These perovskite materials may be considered the next generation electro-catalyst for the ORR because of their photocatalytic activity and physical and chemical properties capable of containing a wide range of A- and B-site metals. This paper reports the ORR activity of a new Y2/3Cu3Ti4O12 perovskite, synthesized via a rapid and facile automatic flame synthesis technique using rotating disk electrode (RDE) measurements. Y2/3Cu3Ti4O12/C has superior ORR activity, stability, and durability compared to commercial Pt/C. The results presented in this article will provide the future perspectives to research based on ACu3Ti4O12 (A = Ca, Y, Bi, Sm, Cd, and La) perovskite as the next generation electro-catalyst for the ORR in various electrochemical devices, such as fuel cells, metal-air batteries, and electrolysis.

11.
Inorg Chem ; 56(16): 9814-9824, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28776994

ABSTRACT

A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi2Al2Si2N6:Eu2+ phosphors in the Eu2+-doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi2Al2Si2N6:Eu2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi2Al2Si2N6:Eu2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi2Al2Si2N6:Eu2+ phosphors.

12.
Phys Chem Chem Phys ; 19(25): 16702-16712, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28621354

ABSTRACT

A novel oxynitride compound, Pr4-xCaxSi12O3+xN18-x, synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

13.
ACS Appl Mater Interfaces ; 8(50): 34777-34783, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27998116

ABSTRACT

We developed a hybrid strain sensor by combining mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS composites and piezoresistive CNT/PDMS for qualitative and quantitative analysis of onsite strain. The former guarantees a qualitative onsite measure of strain with red-light emission via mechanoluminescence (ML) and the latter takes part in accurate quantification of strain through the change in electrical resistance. The PDMS matrix enabled a strain sensing in a wider range of strain, spanning up to several hundred percent in comparison to the conventional rigid matrix composites and ceramic-based ML sensors. Red-light emission would be much more effective for the visualization of strain (or stress) when ML is used as a warning sign in actual applications such as social infrastructure safety diagnosis, emergency guide lighting, and more importantly, in biomedical applications such as in the diagnosis of motility and peristalsis disorders in the gastrointestinal tract. Despite the realization of an efficient red-light-emitting ML in a ZnS:Cu/rhodamine/SiO2/PDMS composite, the quantification and standardization of strain throughout the ML has been far from complete. In this regard, the piezoresistive CNT/PDMS compensated for this demerit of mechanoluminescent ZnS:Cu/rhodamine/SiO2/PDMS composites.

14.
Inorg Chem ; 55(20): 10310-10319, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27676461

ABSTRACT

A solid-state combinatorial chemistry approach, which used the A-Ge-O (A = Li, K, Rb) system doped with a small amount of Mn4+ as an activator, was adopted in a search for novel red-emitting phosphors. The A site may have been composed of either a single alkali metal ion or of a combination of them. This approach led to the discovery of a novel phosphor in the above system with the chemical formula Li3RbGe8O18:Mn4+. The crystal structure of this novel phosphor was solved via direct methods, and subsequent Rietveld refinement revealed a trigonal structure in the P3̅1m space group. The discovered phosphor is believed to be novel in the sense that neither the crystal structure nor the chemical formula matches any of the prototype structures available in the crystallographic information database (ICDD or ICSD). The measured photoluminescence intensity that peaked at a wavelength of 667 nm was found to be much higher than the best intensity obtained among all the existing A2Ge4O9 (A = Li, K, Rb) compounds in the alkali-germanate system. An ab initio calculation based on density function theory (DFT) was conducted to verify the crystal structure model and compare the calculated value of the optical band gap with the experimental results. The optical band gap obtained from diffuse reflectance measurement (5.26 eV) and DFT calculation (4.64 eV) results were in very good agreement. The emission wavelength of this phosphor that exists in the deep red region of the electromagnetic spectrum may be very useful for increasing the color gamut of LED-based display devices such as ultrahigh-definition television (UHDTV) as per the ITU-R BT.2020-2 recommendations and also for down-converter phosphors that are used in solar-cell applications.

15.
ACS Omega ; 1(3): 483-490, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-31457141

ABSTRACT

An ab initio calculation based on density functional theory (DFT) was used to verify the disordered structure of a novel oxynitride phosphor host, La4-x Ca x Si12O3+x N18-x , with a large unit cell (74 atoms), low level of symmetry (C2), and large band gap (4.45 eV). Several Wyckoff sites in the La4-x Ca x Si12O3+x N18-x structure were randomly shared by La/Ca and O/N ions. This type of structure is referred to as either partially occupied or disordered. The adoption of a supercell that is sufficiently large along with an infinite variety of ensemble configurations to simulate such a random distribution in a partially occupied structure would be an option that could achieve a reliable DFT calculation, but this would increase the calculation expenses significantly. We chose 5184 independent unit cell configurations to be used as input model structures for DFT calculations, which is a reduction from a possible total of 20 736 unit cell configurations for C2 symmetry. Instead of calculating the total energy as well as the band gap energy for all 5184 configurations, we pinpointed configurations that would exhibit a band gap that approximated the actual value by employing an elitist nondominated sorting genetic algorithm (NSGA-II) wherein the 5184 configurations were represented mathematically as genomes and the calculated total and band gap energies were represented as objective (fitness) functions. This preliminary screening based on NSGA-II was completed using a generalized gradient approximation (GGA), and thereafter, we executed a hybrid functional calculation (HSE06) for only the most plausible GGA-relaxed configurations with higher band gap energies and lower total energies. Finally, we averaged the HSE06 band gap energy over these selected configurations using the Boltzmann energy distribution and achieved a realistic band gap energy that more closely approximated the experimental measurement.

16.
ACS Comb Sci ; 17(5): 317-25, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25853926

ABSTRACT

The theoretical understanding of phosphor luminescence is far from complete. To accomplish a full understanding of phosphor luminescence, the data mining of existing experimental data should receive equal consideration along with theoretical approaches. We mined the crystallographic and luminescence data of 75 reported Eu(2+)-doped phosphors with a single Wyckoff site for Eu(2+) activator accommodation, and 32 descriptors were extracted. A confirmatory factor analysis (CFA) based on a structural equation model (SEM) was employed since it has been helpful in understanding complex problems in social sciences and in bioinformatics. This first attempt at applying CFA to the data mining of engineering materials provided a better understanding of the structural and luminescent-property relationships for LED phosphors than what we have learnt so far from the conventional theoretical approaches.


Subject(s)
Computational Biology , Europium/chemistry , Luminescent Agents/chemistry , Factor Analysis, Statistical , Luminescence , Models, Molecular , Quantum Theory
17.
Inorg Chem ; 54(4): 1829-40, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25594669

ABSTRACT

The discovery of novel phosphors for use in light emitting diodes (LED) has gained in significance because LED-based solid-state lighting applications now attract a great deal of attention for energy savings and environmental concerns. Recent research trends have centered on the discovery of novel phosphors, not on slight variations of well-known phosphors. In a real sense, novelty goes beyond simple variations or improvements in existing phosphors. A brilliant strategy for the discovery of novel phosphors is to introduce an appropriate activator to existing inorganic compounds. These compounds have structures that are well-defined in crystallographic structure databases, but they have never been considered as a phosphor host. Another strategy is to discover new host compounds with structures that cannot be found in existing databases. We have simultaneously pursued both strategies by employing metaheuristics-assisted combinatorial material search techniques. In the present investigation, we screened a search space consisting of Ln-Al-Si-O-N (Ln = Y, La, Gd, Lu), and thereby we discovered a blue-light-emitting novel phosphor, Gd3Al(3+x)Si(3-x)O(12+x)N(2-x):Ce(3+), with a monoclinic system in the C2 space group--a potential candidate for UV-LED applications.

18.
J Am Chem Soc ; 136(6): 2363-73, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24437942

ABSTRACT

Most of the novel phosphors that appear in the literature are either a variant of well-known materials or a hybrid material consisting of well-known materials. This situation has actually led to intellectual property (IP) complications in industry and several lawsuits have been the result. Therefore, the definition of a novel phosphor for use in light-emitting diodes should be clarified. A recent trend in phosphor-related IP applications has been to focus on the novel crystallographic structure, so that a slight composition variance and/or the hybrid of a well-known material would not qualify from either a scientific or an industrial point of view. In our previous studies, we employed a systematic materials discovery strategy combining heuristics optimization and a high-throughput process to secure the discovery of genuinely novel and brilliant phosphors that would be immediately ready for use in light emitting diodes. Despite such an achievement, this strategy requires further refinement to prove its versatility under any circumstance. To accomplish such demands, we improved our discovery strategy by incorporating an elitism-involved nondominated sorting genetic algorithm (NSGA-II) that would guarantee the discovery of truly novel phosphors in the present investigation. Using the improved discovery strategy, we discovered an Eu(2+)-doped AB5X8 (A = Sr or Ba, B = Si and Al, X = O and N) phosphor in an orthorhombic structure (A21am) with lattice parameters a = 9.48461(3) Å, b = 13.47194(6) Å, c = 5.77323(2) Å, α = ß = γ = 90°, which cannot be found in any of the existing inorganic compound databases.

19.
ACS Appl Mater Interfaces ; 4(12): 6842-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23157333

ABSTRACT

The structural characteristics of terbium-doped spinel LiTb(x)Mn(2-x)O(4) related to the electrochemical performance were studied as the cathode in lithium-ion batteries. We chose terbium as the dopant, which is a well-known mixed-valent cation (3+/4+), expecting that it would provide structural stabilization and improve the power density. LiTb(x)Mn(2-x)O(4) revealed that terbium doping significantly affected the lattice structure and lithium-ion diffusion during charge-discharge cycles, resulting in an enhanced capacity retention and rate capability at an extremely small amount of terbium doping (LiTb(0.01)Mn(1.99)O(4)). The absence of two-cubic phase formation in the delithiated state and a tetragonal phase in the overlithiated state, along with a reduced dimensional change of the main cubic phase during charge-discharge, provided LiTb(0.01)Mn(1.99)O(4) with structural stability at both room temperature and 60 °C. The fast lithium-ion diffusion resulted in reduced polarization, which became more conspicuous as the C rates increased. As a result, the power density of LiTb(0.01)Mn(1.99)O(4), which was similar to that of LiMn(2)O(4) at 1C (476.1 W·kg(-1) for LiMn(2)O(4) vs 487.0 W·kg(-1) for LiTb(0.01)Mn(1.99)O(4)), was greatly improved at higher C rates. For example, the power density of LiTb(0.01)Mn(1.99)O(4) was improved to 4000 and 6000 W·kg(-1) at 10 and 20, respectively, compared with 3120 and 3320 W·kg(-1) for pristine LiMn(2)O(4).

20.
ACS Comb Sci ; 14(10): 537-44, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-22920282

ABSTRACT

A double-ternary combinatorial chemistry (combi-chem) library was visualized in terms of structure, PL intensity, and color chromaticity for a nitride phosphor system, ARSi4N7:Eu(2+) (A = Sr, Ca, Ba; R = Y, La, Lu), so as to obtain a quantitative structure and property relationship (QSPR) in a systematic manner. Most of the samples constituting the double-ternary combi-chem library turned out to have ARSi4N7 structures with a P63mc space group. However, several phases such as Ca2Si5N8 with a Cc space group, LaSi3N5 with a P212121 space group, R6Si11N20O with a P31c space group, etc., coexisted. Aside from the green luminescence from the well-known SrYSi4N7:Eu(2+) and BaYSi4N7:Eu(2+) phosphors, their solid solutions (Sr,Ba)Si4N7:Eu(2+) proved to possess better PL properties. In addition, novel phosphors with an acceptable green PL intensity and color chromaticity were discovered in the ALuSi4N7:Eu(2+) side of the double-ternary combi-chem library. The Ca-rich side did not constitute a single-phase ARSi4N7 structure with a P63mc space group, and therefore the red emission in the Ca-rich side proved to originate from well-known Ca2Si5N8:Eu(2+) phosphors, which resided in the sample as a minor phase.


Subject(s)
Combinatorial Chemistry Techniques , Luminescent Agents/chemistry , Metals/chemistry , Nitrogen/chemistry , Silicon/chemistry , Luminescent Measurements , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...