Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453502

ABSTRACT

Glioblastoma (GBM) is a lethal brain cancer exhibiting high levels of drug resistance, a feature partially imparted by tumor cell stemness. Recent work shows that homozygous MTAP deletion, a genetic alteration occurring in about half of all GBMs, promotes stemness in GBM cells. Exploiting MTAP loss-conferred deficiency in purine salvage, we demonstrate that purine blockade via treatment with L-Alanosine (ALA), an inhibitor of de novo purine synthesis, attenuates stemness of MTAP-deficient GBM cells. This ALA-induced reduction in stemness is mediated in part by compromised mitochondrial function, highlighted by ALA-induced elimination of mitochondrial spare respiratory capacity. Notably, these effects of ALA are apparent even when the treatment was transient and with a low dose. Finally, in agreement with diminished stemness and compromised mitochondrial function, we show that ALA sensitizes GBM cells to temozolomide (TMZ) in vitro and in an orthotopic GBM model. Collectively, these results identify purine supply as an essential component in maintaining mitochondrial function in GBM cells and highlight a critical role of mitochondrial function in sustaining GBM stemness. We propose that purine synthesis inhibition can be beneficial in combination with the standard of care for MTAP-deficient GBMs, and that it may be feasible to achieve this benefit without inflicting major toxicity.

2.
Mol Cancer Res ; 19(12): 2046-2056, 2021 12.
Article in English | MEDLINE | ID: mdl-34521764

ABSTRACT

Strengthened DNA repair pathways in tumor cells contribute to the development of resistance to DNA-damaging agents. Consequently, targeting proteins in these pathways is a promising strategy for tumor chemosensitization. Here, we show that the expression of a subset of Fanconi anemia (FA) genes is attenuated in glioblastoma tumor cells deficient in methylthioadenosine phosphorylase (MTAP), a common genetic alteration in a variety of cancers. Subsequent experiments in cell line models of different cancer types illustrate that this reduced transcription of FA genes can be recapitulated by blockage of Protein Arginine Methyltransferase 5 (PRMT5), a promising therapeutically targetable epigenetic regulator whose enzymatic activity is compromised in MTAP-deficient cells. Further analyses provide evidence to support that PRMT5 can function as an epigenetic regulator that contributes to the increased expression of FA genes in cancer cells. Most notably and consistent with the essential roles of FA proteins in resolving DNA damage elicited by interstrand crosslinking (ICL) agents, PRMT5 blockage, as well as MTAP loss, sensitizes tumor cells to ICL agents both in vitro and in xenografts. Collectively, these findings reveal a novel epigenetic mechanism underlying the upregulated expression of FA genes in cancer cells and suggest that therapeutically targeting PRMT5 can have an additional benefit of chemosensitizing tumor cells to ICL agents. IMPLICATIONS: PRMT5 positively regulates the expression of FA genes. Inhibition of PRMT5 attenuates FA-dependent DNA repair pathway and sensitizes tumor cells to ICL agents.


Subject(s)
Epigenesis, Genetic/genetics , Fanconi Anemia/genetics , Gene Expression/genetics , Protein-Arginine N-Methyltransferases/metabolism , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Nude
3.
Cell Rep ; 28(12): 3199-3211.e5, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31533041

ABSTRACT

H2AX safeguards genomic stability in a dose-dependent manner; however, mechanisms governing its proteostasis are poorly understood. Here, we identify a PRMT5-RNF168-SMURF2 cascade that regulates H2AX proteostasis. We show that PRMT5 sustains the expression of RNF168, an E3 ubiquitin ligase essential for DNA damage response (DDR). Suppression of PRMT5 occurs in methylthioadenosine phosphorylase (MTAP)-deficient glioblastoma cells and attenuates the expression of RNF168, leading to destabilization of H2AX by E3 ubiquitin ligase SMURF2. RNF168 and SMURF2 serve as a stabilizer and destabilizer of H2AX, respectively, via their dynamic interactions with H2AX. In supporting an important role of this signaling cascade in regulating H2AX, MTAP-deficient glioblastoma cells display higher levels of DNA damage spontaneously or in response to genotoxic agents. These findings reveal a regulatory mechanism of H2AX proteostasis and define a signaling cascade that is essential to DDR and that is disrupted by the loss of a metabolic enzyme in tumor cells.


Subject(s)
Glioblastoma/metabolism , Histones/metabolism , Neoplasm Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proteostasis , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , DNA Damage , Glioblastoma/genetics , Glioblastoma/pathology , Histones/genetics , Humans , Neoplasm Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Ubiquitin-Protein Ligases/genetics
4.
Cancer Res ; 79(13): 3383-3394, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31040154

ABSTRACT

Homozygous deletion of methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of PROM1/CD133-associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of PROM1/CD133 and enhanced tumorigenicity of GBM cells and is associated with poor prognosis in patients with GBM. As a combined consequence of purine production deficiency in MTAP-null GBM and the critical dependence of GSCs on purines, the enriched subset of CD133+ cells in MTAP-null GBM can be effectively depleted by inhibition of de novo purine synthesis. These findings suggest that MTAP loss promotes the pathogenesis of GBM by shaping the epigenetic landscape and stemness of GBM cells while simultaneously providing a unique opportunity for GBM therapeutics. SIGNIFICANCE: This study links the frequently mutated metabolic enzyme MTAP to dysregulated epigenetics and cancer cell stemness and establishes MTAP status as a factor for consideration in characterizing GBM and developing therapeutic strategies.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Purine-Nucleoside Phosphorylase/metabolism , Purines/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mice , Neoplastic Stem Cells/metabolism , Prognosis , Purine-Nucleoside Phosphorylase/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Elife ; 62017 10 02.
Article in English | MEDLINE | ID: mdl-28967864

ABSTRACT

During tumorigenesis, the high metabolic demand of cancer cells results in increased production of reactive oxygen species. To maintain oxidative homeostasis, tumor cells increase their antioxidant production through hyperactivation of the NRF2 pathway, which promotes tumor cell growth. Despite the extensive characterization of NRF2-driven metabolic rewiring, little is known about the metabolic liabilities generated by this reprogramming. Here, we show that activation of NRF2, in either mouse or human cancer cells, leads to increased dependency on exogenous glutamine through increased consumption of glutamate for glutathione synthesis and glutamate secretion by xc- antiporter system. Together, this limits glutamate availability for the tricarboxylic acid cycle and other biosynthetic reactions creating a metabolic bottleneck. Cancers with genetic or pharmacological activation of the NRF2 antioxidant pathway have a metabolic imbalance between supporting increased antioxidant capacity over central carbon metabolism, which can be therapeutically exploited.


Subject(s)
Antioxidants/metabolism , Carbon/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Glutamic Acid/metabolism , Glutathione/metabolism , Homeostasis , Humans , Mice
6.
Nat Med ; 23(11): 1362-1368, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28967920

ABSTRACT

Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.


Subject(s)
Adenocarcinoma/genetics , Genes, ras , Glutamine/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Lung Neoplasms/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Glutaminase/antagonists & inhibitors , Humans , Hydrolysis , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice
7.
Nat Commun ; 7: 13197, 2016 10 25.
Article in English | MEDLINE | ID: mdl-28959951

ABSTRACT

Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers.


Subject(s)
Gene Expression Profiling/methods , Mutation , Neoplasms/genetics , RNA, Long Noncoding/genetics , A549 Cells , Cell Line, Tumor , Gene Dosage , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, p53 , Glutamate-Cysteine Ligase/genetics , Humans , Molecular Sequence Annotation , NF-E2-Related Factor 2/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Sequence Analysis, RNA , Transcription Factors/genetics , Transcriptome , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...