Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 104(1): 200-214, 2020 09.
Article in English | MEDLINE | ID: mdl-32645755

ABSTRACT

The development of improved plant nucleotide-binding, leucine-rich repeat (LRR) immune receptors (NLRs) has mostly been based on random mutagenesis or on structural information available for specific receptors complexed with the recognized pathogen effector. Here, we use a targeted mutagenesis approach based on the natural diversity of the Pm3 powdery mildew resistance alleles present in different wheat (Triticum aestivum) genotypes. In order to understand the functional importance of the amino acid polymorphisms between the active immune receptor PM3A and the inactive ancestral variant PM3CS, we exchanged polymorphic regions and residues in the LRR domain of PM3A with the corresponding segments of PM3CS. These novel variants were functionally tested for recognition of the corresponding AVRPM3A2/F2 avirulence protein in Nicotiana benthamiana. We identified polymorphic residues in four regions of PM3A that enhance the immune response, but also residues that reduce it or result in complete loss of function. We found that the identified critical residues in PM3A modify its activation threshold towards different protein variants of AVRPM3A2/F2 . PM3A variants with a lowered threshold gave a stronger overall response and gained an extended recognition spectrum. One of these variant proteins with a single amino acid change was stably transformed into wheat, where it conferred race-specific resistance to mildew. This is a proof of concept that improved PM3A variants with an enlarged recognition spectrum can be engineered based on natural diversity by exchanging single or multiple residues that modulate resistance function.


Subject(s)
NLR Proteins/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Triticum/immunology , NLR Proteins/physiology , Plant Proteins/physiology , Plants, Genetically Modified , Polymorphism, Single Nucleotide/genetics , Triticum/genetics
2.
Ecotoxicology ; 19(2): 338-50, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19779818

ABSTRACT

The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home of many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Because, large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of septic systems, a comprehensive survey of selected human waste contamination markers was conducted in three areas to assess water quality with respect to non-traditional micro-constituents. This study documents the occurrence and distribution of fifteen hormones and steroids and five commonly detected pharmaceuticals in surface water samples collected from different near shore environments along South Florida between 2004 and 2006. The compounds most frequently detected were: cholesterol, caffeine, estrone, DEET, coprostanol, biphenol-A, beta-estradiol, and triclosan. The concentration detected for estrone and beta-estradiol were up to 5.2 and 1.8 ng/L, respectively. Concentrations of caffeine (5.5-68 ng/L) and DEET (4.8-49 ng/L) were generally higher and more prevalent than were the steroids. Distribution of microconstituents was site specific likely reflecting a diversity of sources. In addition to chemical analysis, the yeast estrogen screen assay was used to screen the samples for estrogen equivalency. Overall, the results show that water collected from inland canals and restricted circulation water bodies adjacent to heavily populated areas had high concentrations of multiple steroids, pharmaceuticals, and personal care products while open bay waters were largely devoid of the target analytes.


Subject(s)
Ecosystem , Environmental Monitoring , Hormones/analysis , Pharmaceutical Preparations/analysis , Sewage/analysis , Steroids/analysis , Water Pollutants, Chemical/analysis , Biological Assay , Estrogens/analysis , Estrogens/metabolism , Florida , Pharmaceutical Preparations/chemistry , Risk Assessment , Rivers/chemistry , Seawater/chemistry , Sewage/chemistry , Time Factors , Water Pollutants, Chemical/chemistry
3.
Water Res ; 40(3): 588-94, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16443254

ABSTRACT

1-Aminopropanone (APR) is a volatile aminoketone of human origin that has been identified in raw sewage and surface waters. However, the traditional methodology for the determination of APR is extremely complicated and requires a skilled chemist to achieve consistent results. This investigation presents a novel and simple method for the analysis of APR by direct derivatization in aqueous media. APR is synthesized as its hydrochloride and derivatized using mercaptoethanol and o-phthalaldehyde. The product of reaction is separated on a 15 cm x 4.6 mm Luna C-18 column (1 mL/min, 45:55 acetonitrile: Water) and detected using a single quadrupole mass spectrometer detector operated in atmospheric pressure chemical ionization (APCI) mode. Method detection limits as low as 100 nM were routinely obtained with a precision of 1.7%. Recoveries of APR were always found to be greater then 88% in surface and wastewater samples fortified at three different levels. However, despite the robustness of the method and the fact that APR was consistently detected in urine it was not present in a variety surface or wastewaters analyzed during the course of the study. These results pose a critical question on the use of APR as a tracer for human derived wastewaters.


Subject(s)
Acetone/analogs & derivatives , Propanolamines/analysis , Waste Disposal, Fluid/standards , Acetone/analysis , Chromatography, Liquid , Environmental Monitoring/methods , Humans , Mass Spectrometry , Sensitivity and Specificity , Sewage/chemistry , Urinalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...