Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 6451770, 2022.
Article in English | MEDLINE | ID: mdl-35958823

ABSTRACT

Most of the people all over the world pass away from complications related to lung cancer every single day. It is a deadly form of the disease. To improve a person's chances of survival, an early diagnosis is a necessary prerequisite. In this regard, the existing methods of tumour detection, such as CT scans, are most commonly used to recognize infected regions. Despite this, there are certain obstacles presented by CT imaging, so this paper proposes a novel model which is a correlation-based model designed for analysis of lung cancer. When registering pictures of thoracic and abdominal organs with slider motion, the total variation regularization term may correct the border discontinuous displacement field, but it cannot maintain the local characteristics of the image and loses the registration accuracy. The thin-plate spline energy operator and the total variation operator are spatially weighted via the spatial position weight of the pixel points to construct an adaptive thin-plate spline total variation regular term for lung image CT single-mode registration and CT/PET dual-mode registration. The regular term is then combined with the CRMI similarity measure and the L-BFGS optimization approach to create a nonrigid registration procedure. The proposed method assures the smoothness of interior of the picture while ensuring the discontinuous motion of the border and has greater registration accuracy, according to the experimental findings on the DIR-Lab 4D-CT public dataset and the CT/PET clinical dataset.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms , Algorithms , Humans , Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Motion , Thorax
2.
Biomed Res Int ; 2022: 6336700, 2022.
Article in English | MEDLINE | ID: mdl-35909482

ABSTRACT

An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model's ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and F1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage.


Subject(s)
Breast Neoplasms , Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Delivery of Health Care , Female , Humans , Image Processing, Computer-Assisted/methods
3.
Contrast Media Mol Imaging ; 2022: 9171343, 2022.
Article in English | MEDLINE | ID: mdl-35800239

ABSTRACT

The most common human parasite as per the medical experts is the malarial disease, which is caused by a protozoan parasite, and Plasmodium falciparum, a common parasite in humans. A microscopist with expertise in malaria diagnosis must conduct this complex procedure to identify the stages of infection. This epidemic is an ongoing disease in some parts of the world, which is commonly found. A Kaggle repository was used to upload the data collected from the NIH portal. The dataset contains 27558 samples, of which 13779 samples carry parasites and 13779 samples do not. This paper focuses on two of the most common deep transfer learning methods. Unlike other feature extractors, VGG-19's fine-tuning and pretraining made it an ideal feature extractor. Several image classification models, including VGG-19, have been pretrained on larger datasets. Additionally, deep learning strategies based on pretrained models are proposed for detecting malarial parasite cases in the early stages, in addition to an accuracy rating of 98.34 ∗ 0.51%.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Computer Simulation , Humans , Malaria/diagnosis , Malaria/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL
...