Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Clin Biochem ; 39(3): 415-420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005860

ABSTRACT

Adipsin is an anti-inflammatory adipokines and its altered level was seen in obesity and type II DM. Our study investigated the clinical significance of serum adipsin levels as a risk marker for type 2 diabetes and its relationships with insulin resistance and various adipo-cytokines. The study included 110 treatment-naïve T2DM cases and 100 controls of similar age and gender from northern India. Clinical, biochemical, and anthropometric characteristics were all profiled. Serum adipo-cytokines were measured using ELISA methods. Adipsin was significantly inversely correlated with body mass index (BMI), waist circumference, fasting plasma glucose, glycated haemoglobin (HbA1C), total cholesterol (TC), triglyceride (TG), homeostasis model assessment-estimated insulin resistance (HOMA-IR), tumour necrosis factor- α (TNF-α) and interleulin-6 (IL-6) and positively correlated with high-density lipoprotein cholesterol (HDL-C) and homeostasis model assessment of ß-cell function (HOMA-B) (P < 0.05). T2DM occurrence decreased with increasing concentration of adipsin with an odds ratio (OR) of 0.68 (95% CI = 0.58-0.79), P < 0.001. The area under curve (95% CI) for adipsin was 0.70 (0.63 to 0.76) with P < 0.001. The best cutoff value for adipsin to predict T2DM was < 5.50 µg/ml with 47.27% sensitivity and 82.00% specificity. FPG and WC were both independent predictors of serum adipsin levels. Our findings showed that high adipsin levels reduced the likelihood of T2DM and emerged as a potential risk marker in the prediction of T2DM.

2.
BMC Biol ; 20(1): 134, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35676681

ABSTRACT

BACKGROUND: New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection. RESULTS: We performed a protein-based homology search across the tree of life to determine the evolutionary age of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression. CONCLUSIONS: These data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plants/metabolism , Transcription Initiation Site
3.
J Exp Bot ; 71(17): 5280-5293, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32526034

ABSTRACT

Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatin , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Stress, Physiological
4.
SELECTION OF CITATIONS
SEARCH DETAIL
...