Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2487, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291130

ABSTRACT

Pneumonia is a widespread and acute respiratory infection that impacts people of all ages. Early detection and treatment of pneumonia are essential for avoiding complications and enhancing clinical results. We can reduce mortality, improve healthcare efficiency, and contribute to the global battle against a disease that has plagued humanity for centuries by devising and deploying effective detection methods. Detecting pneumonia is not only a medical necessity but also a humanitarian imperative and a technological frontier. Chest X-rays are a frequently used imaging modality for diagnosing pneumonia. This paper examines in detail a cutting-edge method for detecting pneumonia implemented on the Vision Transformer (ViT) architecture on a public dataset of chest X-rays available on Kaggle. To acquire global context and spatial relationships from chest X-ray images, the proposed framework deploys the ViT model, which integrates self-attention mechanisms and transformer architecture. According to our experimentation with the proposed Vision Transformer-based framework, it achieves a higher accuracy of 97.61%, sensitivity of 95%, and specificity of 98% in detecting pneumonia from chest X-rays. The ViT model is preferable for capturing global context, comprehending spatial relationships, and processing images that have different resolutions. The framework establishes its efficacy as a robust pneumonia detection solution by surpassing convolutional neural network (CNN) based architectures.


Subject(s)
Pneumonia , Respiratory Tract Infections , Humans , X-Rays , Pneumonia/diagnostic imaging , Humanities , Radiography
2.
Heliyon ; 9(8): e18613, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37593641

ABSTRACT

The most significant and renewable class of polymeric materials are extracellular exopolysaccharides (EPSs) produced by microorganisms. Because of their diverse chemical and structural makeup, EPSs play a variety of functions in a variety of industries, including the agricultural industry, dairy industry, biofilms, cosmetics, and others, demonstrating their biotechnological significance. EPSs are typically utilized in high-value applications, and current research has focused heavily on them because of their biocompatibility, biodegradability, and compatibility with both people and the environment. Due to their high production costs, only a few microbial EPSs have been commercially successful. The emergence of financial barriers and the growing significance of microbial EPSs in industrial and medical biotechnology has increased interest in exopolysaccharides. Since exopolysaccharides can be altered in a variety of ways, their use is expected to increase across a wide range of industries in the coming years. This review introduces some significant EPSs and their composites while concentrating on their biomedical uses.

3.
Sci Rep ; 13(1): 9025, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270553

ABSTRACT

Worldwide, pneumonia is the leading cause of infant mortality. Experienced radiologists use chest X-rays to diagnose pneumonia and other respiratory diseases. The diagnostic procedure's complexity causes radiologists to disagree with the decision. Early diagnosis is the only feasible strategy for mitigating the disease's impact on the patent. Computer-aided diagnostics improve the accuracy of diagnosis. Recent studies established that Quaternion neural networks classify and predict better than real-valued neural networks, especially when dealing with multi-dimensional or multi-channel input. The attention mechanism has been derived from the human brain's visual and cognitive ability in which it focuses on some portion of the image and ignores the rest portion of the image. The attention mechanism maximizes the usage of the image's relevant aspects, hence boosting classification accuracy. In the current work, we propose a QCSA network (Quaternion Channel-Spatial Attention Network) by combining the spatial and channel attention mechanism with Quaternion residual network to classify chest X-Ray images for Pneumonia detection. We used a Kaggle X-ray dataset. The suggested architecture achieved 94.53% accuracy and 0.89 AUC. We have also shown that performance improves by integrating the attention mechanism in QCNN. Our results indicate that our approach to detecting pneumonia is promising.


Subject(s)
Deep Learning , Pneumonia , Humans , X-Rays , Pneumonia/diagnostic imaging , Neural Networks, Computer , Radiography
4.
Multimed Tools Appl ; 81(2): 1743-1764, 2022.
Article in English | MEDLINE | ID: mdl-34658656

ABSTRACT

Pneumonia is an infection in one or both the lungs because of virus or bacteria through breathing air. It inflames air sacs in lungs which fill with fluid which further leads to problems in respiration. Pneumonia is interpreted by radiologists by observing abnormality in lungs in case of fluid in Chest X-Rays. Computer Aided Detection Diagnosis (CAD) tools can assist radiologists by improving their diagnostic accuracy. Such CAD tools use neural networks which are trained on Chest X-Ray dataset to classify a Chest X-Ray into normal or infected with Pneumonia. Convolution neural networks have shown remarkable performance in object detection in an image. Quaternion Convolution neural network (QCNN) is a generalization of conventional convolution neural networks. QCNN treats all three channels (R, G, B) of color image as a single unit and it extracts better representative features and which further improves classification. In this paper, we have trained Quaternion residual network on a publicly available large Chest X-Ray dataset on Kaggle repository and obtained classification accuracy of 93.75% and F-score of .94. We have also compared our performance with other CNN architectures. We found that classification accuracy was higher with Quaternion Residual network when we compared it with a real valued Residual network.

SELECTION OF CITATIONS
SEARCH DETAIL