Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Biochimie ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944107

ABSTRACT

Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.

2.
Iran J Biotechnol ; 22(1): e3644, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827345

ABSTRACT

Background: The search for sources of industrial biocatalysts, which are non-pathogenic and can utilise cheap nutrient sources, has been a continuous endeavour in the ~ 7 billion USD enzyme industry. Beauveria bassiana, an endophytic fungal entomopathogen, is non-pathogenic and possesses the potential to secrete various bioproducts while utilising readily available lignocellulosic biomass. Objective: This study investigated the optimised production of two glycosyl hydrolases, amylase and polygalacturonase, by B. bassiana while utilising readily available agricultural residues. Subsequently, the industrial potential of the enzymes in the clarification of fruit juice was evaluated. Materials and Methods: Initially, seven agro residues were screened for the concomitant production of amylase and polygalacturonase by B. bassiana SAN01. Subsequently, statistical optimisation tools, Plackett Burman Design (PBD) and Central Composite Design (CCD), were employed for the optimisation of enzyme production. The enzyme mixture was partially purified and applied in the clarification of pineapple juice. Result: The production of B. bassiana SAN01 amylase and polygalacturonase was found to be maximal while utilising wheat bran. Subsequent to PBD and CCD optimisation, the optimal conditions for enzyme production were identified to be at 30 °C, pH 6.0 and wheat bran concentration of ~40 g.L-1. Under these optimised conditions, heightened production levels of 34.82 and 51.05 U.mL-1 were recorded for amylase and polygalacturonase, respectively, which were 179% and 187% of the initial unoptimised levels. In addition, the most effective clarification of the juice (~90%) was observed at 35 °C after an incubation time of 120 min with no significant effect on the pH and total dissolved solids. Conclusion: B. bassiana, a well-known biocontrol agent, was shown to produce amylase and polygalacturonase using readily available agricultural residues for the first time. These enzyme production levels are the highest for these enzymes from any known endophytic fungal entomopathogen. This study further demonstrates the potential applicability of B. bassiana in other industrial processes besides its widespread use as a biopesticide.

3.
Heliyon ; 10(5): e26668, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434287

ABSTRACT

Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.

4.
Article in English | MEDLINE | ID: mdl-38253396

ABSTRACT

Amylosucrase (EC 2.4.1.4) is a versatile enzyme with significant potential in biotechnology and food production. To facilitate its efficient preparation, a novel expression strategy was implemented in Bacillus licheniformis for the secretory expression of Neisseria polysaccharea amylosucrase (NpAS). The host strain B. licheniformis CBBD302 underwent genetic modification through the deletion of sacB, a gene responsible for encoding levansucrase that synthesizes extracellular levan from sucrose, resulting in a levan-deficient strain, B. licheniformis CBBD302B. Neisseria polysaccharea amylosucrase was successfully expressed in B. licheniformis CBBD302B using the highly efficient Sec-type signal peptide SamyL, but its extracellular translocation was unsuccessful. Consequently, the expression of NpAS via the twin-arginine translocation (TAT) pathway was investigated using the signal peptide SglmU. The study revealed that NpAS could be effectively translocated extracellularly through the TAT pathway, with the signal peptide SglmU facilitating the process. Remarkably, 62.81% of the total expressed activity was detected in the medium. This study marks the first successful secretory expression of NpAS in Bacillus species host cells, establishing a foundation for its future efficient production. ONE-SENTENCE SUMMARY: Amylosucrase was secreted in Bacillus licheniformis via the twin-arginine translocation pathway.


Subject(s)
Bacillus licheniformis , Glucosyltransferases , Neisseria , Bacillus licheniformis/metabolism , Protein Sorting Signals/genetics , Fructans , Arginine , Bacterial Proteins/genetics
5.
J Ind Microbiol Biotechnol ; 49(3)2022 May 25.
Article in English | MEDLINE | ID: mdl-35325171

ABSTRACT

Bacillus licheniformis is a well-known platform strain for production of industrial enzymes. However, the development of genetically stable recombinant B. licheniformis for high-yield enzyme production is still laborious. Here, a pair of plasmids, pUB-MazF and pUB'-EX1, were firstly constructed. pUB-MazF is a thermosensitive, self-replicable plasmid. It was able to efficiently cure from the host cell through induced expression of an endoribonuclease MazF, which is lethal to the host cell. pUB'-EX1 is a nonreplicative and integrative plasmid. Its replication was dependent on the thermosensitive replicase produced by pUB-MazF. Transformation of pUB'-EX1 into the B. licheniformis BL-UBM harboring pUB-MazF resulted in both plasmids coexisting in the host cell. At an elevated temperature, and in the presence of isopropyl-1-thio-ß-d-galactopyranoside and kanamycin, curing of the pUB-MazF and multiple-copy integration of pUB'-EX1 occurred, simultaneously. Through this procedure, genetically stable recombinants integrated multiple copies of amyS, from Geobacillus stearothermophilus ATCC 31195 were facilely obtained. The genetic stability of the recombinants was verified by repeated subculturing and shaking flask fermentations. The production of α-amylase by recombinant BLiS-002, harboring five copies of amyS, in a 50-l bioreactor reached 50 753 U/ml after 72 hr fermentation. This strategy therefore has potential for production of other enzymes in B. licheniformis and for genetic modification of other Bacillus species.


Subject(s)
Bacillus licheniformis , Bacillus , Amylases , Bacillus/genetics , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Plasmids/genetics , alpha-Amylases/genetics , alpha-Amylases/metabolism
6.
PNAS Nexus ; 1(5): pgac239, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712365

ABSTRACT

Dental caries is a microbial disease and the most common chronic health condition, affecting nearly 3.5 billion people worldwide. In this study, we used a multiomics approach to characterize the supragingival plaque microbiome of 91 Australian children, generating 658 bacterial and 189 viral metagenome-assembled genomes with transcriptional profiling and gene-expression network analysis. We developed a reproducible pipeline for clustering sample-specific genomes to integrate metagenomics and metatranscriptomics analyses regardless of biosample overlap. We introduce novel feature engineering and compositionally-aware ensemble network frameworks while demonstrating their utility for investigating regime shifts associated with caries dysbiosis. These methods can be applied when differential abundance modeling does not capture statistical enrichments or the results from such analysis are not adequate for providing deeper insight into disease. We identified which organisms and metabolic pathways were central in a coexpression network as well as how these networks were rewired between caries and caries-free phenotypes. Our findings provide evidence of a core bacterial microbiome that was transcriptionally active in the supragingival plaque of all participants regardless of phenotype, but also show highly diagnostic changes in the ways that organisms interact. Specifically, many organisms exhibit high connectedness with central carbon metabolism to Cardiobacterium and this shift serves a bridge between phenotypes. Our evidence supports the hypothesis that caries is a multifactorial ecological disease.

7.
J Fungi (Basel) ; 7(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34436207

ABSTRACT

Beauveria bassiana is an entomopathogenic fungus widely used as a biopesticide for insect control; it has also been shown to exist as an endophyte, promoting plant growth in many instances. This study highlights an alternative potential of the fungus; in the production of an industrially important biocatalyst, xylanase. In this regard, Beauveria bassiana SAN01 xylanase was purified to homogeneity and subsequently characterized. The purified xylanase was found to have a specific activity of 324.2 U·mg-1 and an estimated molecular mass of ~37 kDa. In addition, it demonstrated optimal activity at pH 6.0 and 45 °C while obeying Michaelis-Menton kinetics towards beechwood xylan with apparent Km, Vmax and kcat of 1.98 mg·mL-1, 6.65 µM·min-1 and 0.62 s-1 respectively. The enzyme activity was strongly inhibited by Ag2+ and Fe3+ while it was significantly enhanced by Co2+ and Mg2+. Furthermore, the xylanase was shown to effectively deink wastepaper at an optimal rate of 106.72% through its enzymatic disassociation of the fiber-ink bonds as demonstrated by scanning electron microscopy and infrared spectroscopy. This is the first study to demonstrate the biotechnological application of a homogeneously purified glycosyl hydrolase from B. bassiana.

8.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34124759

ABSTRACT

Ammonium hydroxide is conventionally used as an alkaline reagent and cost-effective nitrogen source in enzyme manufacturing processes. However, few ammonia-inducible enzyme expression systems have been described thus far. In this study, genomic-wide transcriptional changes in Bacillus licheniformis CBBD302 cultivated in media supplemented with ammonia were analyzed, resulting in identification of 1443 differently expressed genes, of which 859 genes were upregulated and 584 downregulated. Subsequently, the nucleotide sequences of ammonia-inducible promoters were analyzed and their functionally-mediated expression of amyL, encoding an α-amylase, was shown. TRNA_RS39005 (copA), TRNA_RS41250 (sacA), TRNA_RS23130 (pdpX), TRNA_RS42535 (ald), TRNA_RS31535 (plp), and TRNA_RS23240 (dfp) were selected out of the 859 upregulated genes and each showed higher transcription levels (FPKM values) in the presence of ammonia and glucose than that of the control. The promoters, PcopA from copA, PsacA from sacA, PpdpX from pdpX, Pald from ald, and Pplp from plp, except Pdfp from dfp, were able to mediate amyL expression and were significantly induced by ammonia. The highest enzyme expression level was mediated by Pplp and represented 23% more α-amylase activity after induction by ammonia in a 5-L fermenter. In conclusion, B. licheniformis possesses glucose-independent ammonia-inducible promoters, which can be used to mediate enzyme expression and therefore enhance the enzyme yield in fermentations conventionally fed with ammonia for pH adjustment and nitrogen supply.


Subject(s)
Ammonia/metabolism , Bacillus licheniformis/metabolism , Promoter Regions, Genetic , alpha-Amylases/metabolism , Bacillus licheniformis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA, Bacterial , Fermentation , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Industrial Microbiology , Nitrogen/metabolism , Stress, Physiological , alpha-Amylases/genetics
9.
Bioengineered ; 12(1): 1040-1053, 2021 12.
Article in English | MEDLINE | ID: mdl-33769197

ABSTRACT

The problem of plastic prevalence and associated pollution has grasped the entire planet drastically, putting all fields of science on the stake seeking remedies to this global havoc. To address this crisis, with a single remediation strategy is often found to be baseless, thereby much interest has been evoked in the development of multidisciplinary approaches - involving physico-chemical and biological strategies to nullify the aftermath of plastic pollution in all possible means. Even amidst, the availability of different approaches, the use of biological methods to combat plastic degradation has gained momentum. The most frequently used plastics appear in wide forms such as polyethylene plastic bags, polypropylene-based bottles, polyvinyl chloride pipes and polystyrene styrene cups. Plastic nicknamed as one of the toughest polymers viz. polycarbonate, acrylonitrile butadiene styrene (ABS) and Polydicyclopentadiene; quite often are called so as they resist degradation in normal environmental strategies. They are often degraded in non-hostile and harsh environments of pH, temperature, radiation etc. However, not always it is possible to create such harsh environments for plastic degradation. In such a scenario, the use of gut microbes that can withstand the harsh atmosphere of gut environment could serve as promising candidates for plastic biodegradation. The current article envisages the various gut microbes of various biological agents and their role in plastic remediation. The current review compiles the techniques available for plastic remediation, the microbial prospects of plastic remediation, its challenges, and possible breakthroughs to effective plastic remediation.


Subject(s)
Biodegradable Plastics/metabolism , Bioprospecting , Gastrointestinal Microbiome , Bacteria/metabolism , Biodegradation, Environmental , Environmental Pollution , Humans
10.
Food Chem ; 349: 129165, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33556723

ABSTRACT

There is a growing interest in alternative sources of starch for various industrial applications to cater for the increasing demand of starch, avoid the sole reliance on conventional sources such as corn and to prevent shortage of supply. Legume starches with high levels of amylose and high resistant starch contents are suitable alternatives. However, starch must be modified to overcome the shortcomings associated with native starches. The modification of starch with lipids results in the formation of inclusion complexes, called V-amylose complexes with improved physicochemical and functional properties and this category of modified starch is further regarded as clean-label. Clean-label ingredients are consumer and environmentally friendly and do not contain synthetic chemicals that may present food safety concerns. This review documents the current level of research on V-amylose complexes formed using legumes starches and outlines research gaps that could be explored for better utilisation of these legumes in the industry.


Subject(s)
Digestion , Fabaceae/chemistry , Lipids/chemistry , Starch/chemistry , Amylose/chemistry
11.
Sci Rep ; 11(1): 277, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431973

ABSTRACT

Cyanase catalyzes the bicarbonate-dependent degradation of cyanate to produce ammonia and carbon dioxide, and ammonia is a considerable alternative nitrogen source. Strikingly, the cyanase from the thermophilic fungus Thermomyces lanuginosus (Tl-Cyn) has the highest catalytic efficiency reported among these enzymes. However, its molecular mechanism of action is not clearly understood, because currently there is no structural information available on fungal cyanases. Here we report the crystal structure of Tl-Cyn in complex with inhibitors malonate and formate at 2.2 Å resolution. The structure reveals extensive interactions at the subunit interfaces in a dimer, and a decamer is formed by a pentamer of these dimers. Our biochemical, kinetic and mutagenesis studies confirm the structural observations on the complex and provide further insights into its catalytic mechanism and inhibition. The structure has also aided the creation of a mutant enzyme with enhanced catalytic activity, and such enzymes may have the potential for biotechnological applications, including biotransformation and bioremediation. Moreover, other fungal cyanases with potentially high catalytic activity could also be predicted based on the Tl-Cyn structure, as the active site region among fungal cyanases are highly conserved.


Subject(s)
Biocatalysis , Carbon-Nitrogen Lyases/chemistry , Carbon-Nitrogen Lyases/metabolism , Eurotiales/enzymology , Biodegradation, Environmental , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Temperature
12.
Fungal Biol ; 125(1): 39-48, 2021 01.
Article in English | MEDLINE | ID: mdl-33317775

ABSTRACT

This study was undertaken to explore alternative applications of the widely known entomopathogenic/endophytic fungus, Beauveria bassiana, besides its sole use as a biocontrol agent. B. bassiana SAN01, was investigated for the production of two glycoside hydrolases, xylanase and endoglucanase under submerged conditions. Among the different biomass tested, wheat bran provided the best results for both xylanase and endoglucanase, and their production levels were further enhanced using response surface methodology. Under optimised conditions, heightened yields of 1061 U/ml and 23.03 U/ml were observed for xylanase and endoglucanase, respectively, which were 3.44 and 1.35 folds higher than their initial yields. These are the highest ever production levels reported for xylanase and endoglucanase from any B. bassiana strain or any known entomopathogenic fungi. Furthermore, the efficacy of xylanase/endoglucanase cocktail in the saccharification of sugarcane bagasse was evaluated. The highest amount of reducing sugar released from the pretreated biomass by the action of the crude Beauveria enzyme cocktail was recorded at 30°C after 8 h incubation. The significant activities of the hydrolytic enzymes recorded with B. bassiana in this study thus present promising avenues for the use of the entomopathogen as a new source of industrial enzymes and by extension, other biotechnological applications.


Subject(s)
Beauveria , Cellulase , Xylosidases , Beauveria/enzymology , Cellulase/metabolism , Endophytes/enzymology , Saccharum/microbiology , Xylosidases/metabolism
13.
Front Microbiol ; 12: 768297, 2021.
Article in English | MEDLINE | ID: mdl-34975796

ABSTRACT

The increasing distribution of miniaturized plastic particles, viz. microplastics (100 nm-5 mm) and nanoplastics (less than 100 nm), across the various ecosystems is currently a subject of major environmental concern. Exacerbating these concerns is the fact that microplastics and nanoplastics (MNPs) display different properties from their corresponding bulk materials; thus, not much is understood about their full biological and ecological implications. Currently, there is evidence to prove that these miniaturized plastic particles release toxic plastic additives and can adsorb various chemicals, thereby serving as sinks for various poisonous compounds, enhancing their bioavailability, toxicity, and transportation. Furthermore, there is a potential danger for the trophic transfer of MNPs to humans and other higher animals, after being ingested by lower organisms. Thus, this paper critically analyzes our current knowledge with regard to the environmental impacts of MNPs. In this regard, the properties, sources, and damaging effects of MNPs on different habitats, particularly on the biotic components, were elucidated. Similarly, the consequent detrimental effects of these particles on humans as well as the current and future efforts at mitigating these detrimental effects were discussed. Finally, the self-cleaning efforts of the planet via a range of saprophytic organisms on these synthetic particles were also highlighted.

14.
Sci Total Environ ; 759: 143536, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33190901

ABSTRACT

Plastic polymers with different properties have been developed in the last 150 years to replace materials such as wood, glass and metals across various applications. Nevertheless, the distinct properties which make plastic desirable for our daily use also threaten our planet's sustainability. Plastics are resilient, non-reactive and most importantly, non-biodegradable. Hence, there has been an exponential increase in plastic waste generation, which has since been recognised as a global environmental threat. Plastic wastes have adversely affected life on earth, primarily through their undesirable accumulation in landfills, leaching into the soil, increased greenhouse gas emission, etc. Even more damaging is their impact on the aquatic ecosystems as they cause entanglement, ingestion and intestinal blockage in aquatic animals. Furthermore, plastics, especially in the microplastic form, have also been found to interfere with chemical interaction between marine organisms, to cause intrinsic toxicity by leaching, and by absorbing persistent organic contaminants as well as pathogens. The current methods for eliminating these wastes (incineration, landfilling, and recycling) come at massive costs, are unsustainable, and put more burden on our environment. Thus, recent focus has been placed more on the potential of biological systems to degrade synthetic plastics. In this regard, some insects, bacteria and fungi have been shown to ingest these polymers and convert them into environmentally friendly carbon compounds. Hence, in the light of recent literature, this review emphasises the multifaceted roles played by microorganisms in this process. The current understanding of the roles played by actinomycetes, algae, bacteria, fungi and their enzymes in enhancing the degradation of synthetic plastics are reviewed, with special focus on their modes of action and probable enzymatic mechanisms. Besides, key areas for further exploration, such as the manipulation of microorganisms through molecular cloning, modification of enzymatic characteristics and metabolic pathway design, are also highlighted.


Subject(s)
Ecosystem , Plastics , Animals , Aquatic Organisms , Biodegradation, Environmental , Polymers
15.
Food Sci Biotechnol ; 29(11): 1491-1499, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33088598

ABSTRACT

A new aminopeptidase (An-APa) was identified and biochemically characterized from Aspergillus niger CICIM F0215. It had maximal activity at 40 °C and pH 7.0 and exhibited a broad substrate specificity both on hydrophilic and hydrophobic amino acid residues at N-terminals. With An-APa hydrolysis for 1 h, the casein-pepsin and soybean protein isolates (SPI)-pepsin hydrolysates released both hydrophilic and hydrophobic amino acids and the hydrophobic amino acids having Q values (degree of hydrophobicity) greater than 1500 cal/mol were remarkably released. Leu, Ile, Phe, Tyr, Trp, Pro, Val and Lys in the casein hydrolysate after treatment with An-APa increased 18.61, 0.84, 11.35, 13.18, 3.34, 6.30, 7.46, and 8.19 mg/100 mL, respectively, and 19.72, 1.47, 18.37, 11.72, 4.61, 4.10, 8.13, and 5.85 mg/100 mL, respectively, in the SPI hydrolysate. Both accounted for 65.0% and 64.4% of total released free amino acids from casein and SPI hydrolysates, respectively. This indicated that An-APa could be potentially applicable in debittering protein hydrolysates.

16.
Crit Rev Biotechnol ; 40(7): 1019-1034, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32772728

ABSTRACT

Beauveria bassiana though widely perceived as an entomopathogenic fungus has also been found in nature to be endophytic. As entomopathogens, the life cycle of different B. bassiana strains are organized and adapted as pathogens to their invertebrate hosts while as endophytes they maintain a symbiotic relationship with their plant hosts. To fulfill these aforementioned ecological roles, this fungus secretes an array of enzymes as well as secondary metabolites, which all have significant biological roles. Basically, chitinases, lipases and proteases are considered to be the most important of all the enzymes produced by B. bassiana. However, studies have also shown their ability to produce other vital enzymes which include amylase, asparaginase, cellulase, galactosidase etc. Previous reports on this filamentous fungus have laid more emphasis on its entomopathogenicity, its endophytism and its highly acclaimed application in the biological control of pests. This review, however, is the first to fully assess the enzyme-secreting potential of this entomopathogenic fungus and its use as a novel source of several industrial biocatalysts and other important biochemicals. This article highlights the inherent properties of the fungus to degrade various biopolymers as well as its relative safety for human use. Some of the important factors have raised the possibilities of exploitation for industrial production and as safe hosts for gene expression.


Subject(s)
Beauveria , Beauveria/enzymology , Beauveria/genetics , Beauveria/metabolism , Biopolymers , Biotechnology , Chitinases , Fungal Proteins , Lipase , Peptide Hydrolases
17.
3 Biotech ; 10(7): 303, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32566441

ABSTRACT

Two new aspartic proteases, PepAb and PepAc (encoded by pepAb and pepAc), were heterologously expressed and biochemically characterized from Aspergillus niger F0215. They possessed a typical structure of pepsin-type aspartic protease with the conserved active residues D (84, 115), Y (131, 168) and D (281, 326), while their identity in amino acid sequences was only 19.0%. PepAb had maximum activity at pH 2.5 and 50 °C and PepAc at 3.0 and 50 °C. The specific activities of PepAb and PepAc toward casein were 1368.1 and 2081.4 U/mg, respectively. Their activities were significantly promoted by Cu2+ and Mn2+ and completely inhibited by pepstatin. PepAb exhibited higher catalytic efficiency (k cat/K m) toward soy protein isolates than casein, while PepAc showed higher catalytic efficiency toward casein. The hydrolysis capacities of PepAb and PepAc on soy protein isolates were slightly lower than that of previously identified A. niger aspartic protease, PepA (aspergillopepsin I), while the resultant peptide profiles were remarkably different for all three proteases.

18.
Environ Microbiol ; 22(8): 3020-3038, 2020 08.
Article in English | MEDLINE | ID: mdl-32436334

ABSTRACT

Next-generation sequencing technologies have generated, and continue to produce, an increasingly large corpus of biological data. The data generated are inherently compositional as they convey only relative information dependent upon the capacity of the instrument, experimental design and technical bias. There is considerable information to be gained through network analysis by studying the interactions between components within a system. Network theory methods using compositional data are powerful approaches for quantifying relationships between biological components and their relevance to phenotype, environmental conditions or other external variables. However, many of the statistical assumptions used for network analysis are not designed for compositional data and can bias downstream results. In this mini-review, we illustrate the utility of network theory in biological systems and investigate modern techniques while introducing researchers to frameworks for implementation. We overview (1) compositional data analysis, (2) data transformations and (3) network theory along with insight on a battery of network types including static-, temporal-, sample-specific- and differential-networks. The intention of this mini-review is not to provide a comprehensive overview of network methods, rather to introduce microbiology researchers to (semi)-unsupervised data-driven approaches for inferring latent structures that may give insight into biological phenomena or abstract mechanics of complex systems.


Subject(s)
Biology/methods , Biomedical Research/methods , Data Analysis , High-Throughput Nucleotide Sequencing , Semantic Web
19.
Electron. j. biotechnol ; 42: 49-55, Nov. 2019. tab, ilus, graf
Article in English | LILACS | ID: biblio-1087461

ABSTRACT

Background: Protein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis. Results: The B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor. Conclusions: PGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.


Subject(s)
Bacillus licheniformis/enzymology , Glutaminase/metabolism , Arginine , Plasmids , Prostaglandins A/chemistry , Bacillus subtilis , Protein Sorting Signals , Base Sequence , Mutagenesis, Site-Directed , Aspartic Acid , Escherichia coli , Bacillus licheniformis/genetics , Glutaminase/genetics
20.
Crit Rev Biotechnol ; 39(7): 944-963, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31327254

ABSTRACT

This article focuses on significant advances in the production and applications of microbial glutaminases and provides insight into the structures of different glutaminases. Glutaminases catalyze the deamidation of glutamine to glutamic acid, and this unique ability forms the basis of their applications in various industries such as pharmaceutical and food organizations. Microbial glutaminases from bacteria, actinomycetes, yeast, and fungi are of greater significance than animal glutaminases because of their stability, affordability, and ease of production. Owing to these notable benefits, they are considered to possess considerable potential in anticancer and antiviral therapy, flavor enhancers in oriental foods, biosensors and in the production of a nutraceutical theanine. This review also aims to fully explore the potential of microbial glutaminases and to set the pace for future prospects.


Subject(s)
Glutaminase/biosynthesis , Industrial Microbiology/methods , Animals , Cloning, Molecular , Glutaminase/chemistry , Glutaminase/genetics , Glutaminase/pharmacology , Humans , Protein Conformation , Salt Tolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...