Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39054893

ABSTRACT

A correlation between the mechanical properties of cells and various diseases has been emerging in recent years. Atomic force microscopy (AFM) has been widely used to measure a single cell's apparent Young's modulus by treating it as a fully elastic object. More recently, quantitative characterization of the complete viscoelasticity of single cells has become possible. We performed AFM-based nano-indentation experiments on hemocytes isolated from third instar larvae to determine their viscoelasticity and found that live hemocytes, like many other cells, follow a scale-free power-law rheology (PLR) akin to soft glasses. Further, we examined the changes in the rheological response of hemocytes in the presence of pathogenic protein aggregates known to cause neurodegenerative diseases such as Huntington's disorder and amyotrophic lateral sclerosis. Our results show that cells lose their fluidity and appear more solid-like in the presence of certain aggregates, in a manner correlated to actin reorganization. More solid-like cells also display reduced intracellular transport through clathrin-mediated endocytosis (CME). However, the cell's rheology remains largely unaffected and is similar to that of wild-type (WT) hemocytes, if aggregates do not perturb the actin organization and CME. Moreover, the fluid-like nature was significantly recovered when actin organization was rescued by overexpressing specific actin interacting proteins or chaperones. Our study, for the first time, underscores a direct correlation between parameters governing glassy dynamics, actin organization and CME.

2.
STAR Protoc ; 5(1): 102870, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38329878

ABSTRACT

Atomic force microscope (AFM) is a powerful and versatile tool to determine the physical properties of cells. The force-distance curves obtained from AFM experiments can be used to determine the stiffness and viscoelastic properties of cells. Here, we present a protocol for the determination of viscoelasticity from live cells such as Drosophila hemocytes or mouse embryonic stem cells using AFM. This protocol has potential application in determining the physical properties of cells in healthy and diseased conditions. For complete details on the use and execution of this protocol, please refer to Mote et al. (2020),1 and Singh et al. (2023).2.


Subject(s)
Mechanical Phenomena , Animals , Mice , Microscopy, Atomic Force/methods
3.
J Biosci ; 472022.
Article in English | MEDLINE | ID: mdl-35092407

ABSTRACT

In Volume 46 of the Journal of Biosciences, in the article titled 'A cost-effective and efficient approach for generating and assembling reagents for conducting real-time PCR' by Ridim D Mote, V Shinde Laxmikant, Surya Bansi Singh, Mahak Tiwari, Hemant Singh, Juhi Srivastava, Vidisha Tripathi,Vasudevan Seshadri, Amitabha Majumdar and Deepa Subramanyam, published on 27 November 2021 (https://doi.org/10.1007/s12038-021- 00231-w), the second author's name was incorrectly set as V Shinde Laxmikant. The correct name should read as Shinde Laxmikant V.

4.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34845993

ABSTRACT

Real-time PCR is a widely used technique for quantification of gene expression. However, commercially available kits for real-time PCR are very expensive. The ongoing coronavirus pandemic has severely hampered the economy in a number of developing countries, resulting in a reduction in available research funding. The fallout of this will result in limiting educational institutes and small enterprises from using cutting edge biological techniques such as real-time PCR. Here, we report a cost-effective approach for preparing and assembling cDNA synthesis and real-time PCR mastermixes with similar efficiencies as commercially available kits. Our results thus demonstrate an alternative to commercially available kits.


Subject(s)
Real-Time Polymerase Chain Reaction/methods , Benzothiazoles , Diamines , Indicators and Reagents , Quinolines , Real-Time Polymerase Chain Reaction/economics
5.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-33737502

ABSTRACT

Autophagy is a vacuolar pathway for the regulated degradation and recycling of cellular components. Beclin1, a Bcl2-interacting protein, is a well-studied autophagy regulator. Homozygous loss of Beclin1 in mice leads to early embryonic lethality. However, the role of Beclin1 in regulating the pluripotency of embryonic stem cells and their differentiation remains poorly explored. To study this, we generated Beclin1-Knockout (KO) mouse embryonic stem cells (mESCs) using the CRISPR-Cas9 genome-editing tool. Interestingly, Beclin1-KO mESCs did not show any change in the expression of pluripotency marker genes. Beclin1-KO mESCs also displayed active autophagy, suggesting the presence of Beclin1-independent autophagy in mESCs. However, loss of Beclin1 resulted in compromised differentiation of mESCs in vitro and in vivo due to misregulated expression of transcription factors. Our results suggest that Beclin1 may play an autophagy-independent role in regulating the differentiation of mESCs.


Subject(s)
Beclin-1/physiology , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , Animals , Autophagy/genetics , Beclin-1/genetics , CRISPR-Cas Systems , Cell Differentiation/genetics , Endoderm/cytology , Mesoderm/cytology , Mice , Mice, Knockout , Mice, SCID
6.
J Biol Chem ; 295(49): 16888-16896, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33087446

ABSTRACT

Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.


Subject(s)
Clathrin Heavy Chains/metabolism , Endocytosis , Mouse Embryonic Stem Cells/chemistry , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/physiology , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Differentiation , Cellular Reprogramming , Clathrin Heavy Chains/antagonists & inhibitors , Clathrin Heavy Chains/genetics , Elastic Modulus , Mice , Microscopy, Atomic Force , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Phosphorylation , Profilins/antagonists & inhibitors , Profilins/genetics , Profilins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Thiazolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...